Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Autism ; 15(1): 9, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297387

RESUMEN

BACKGROUND: SHANK3 gene is a highly replicated causative gene for autism spectrum disorder and has been well characterized in multiple Shank3 mutant rodent models. When compared to rodents, domestic dogs are excellent animal models in which to study social cognition as they closely interact with humans and exhibit similar social behaviors. Using CRISPR/Cas9 editing, we recently generated a dog model carrying Shank3 mutations, which displayed a spectrum of autism-like behaviors, such as social impairment and heightened anxiety. However, the neural mechanism underlying these abnormal behaviors remains to be identified. METHODS: We used Shank3 mutant dog models to examine possible relationships between Shank3 mutations and neuronal dysfunction. We studied electrophysiological properties and the synaptic transmission of pyramidal neurons from acute brain slices of the prefrontal cortex (PFC). We also examined dendrite elaboration and dendritic spine morphology in the PFC using biocytin staining and Golgi staining. We analyzed the postsynaptic density using electron microscopy. RESULTS: We established a protocol for the electrophysiological recording of canine brain slices and revealed that excitatory synaptic transmission onto PFC layer 2/3 pyramidal neurons in Shank3 heterozygote dogs was impaired, and this was accompanied by reduced dendrite complexity and spine density when compared to wild-type dogs. Postsynaptic density structures were also impaired in Shank3 mutants; however, pyramidal neurons exhibited hyperexcitability. LIMITATIONS: Causal links between impaired PFC pyramidal neuron function and behavioral alterations remain unclear. Further experiments such as manipulating PFC neuronal activity or restoring synaptic transmission in Shank3 mutant dogs are required to assess PFC roles in altered social behaviors. CONCLUSIONS: Our study demonstrated the feasibility of using canine brain slices as a model system to study neuronal circuitry and disease. Shank3 haploinsufficiency causes morphological and functional abnormalities in PFC pyramidal neurons, supporting the notion that Shank3 mutant dogs are new and valid animal models for autism research.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Perros , Animales , Trastorno Autístico/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células Piramidales/metabolismo , Transmisión Sináptica/genética , Corteza Prefrontal , Ansiedad , Modelos Animales de Enfermedad
2.
Mol Psychiatry ; 28(9): 3739-3750, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37848710

RESUMEN

Despite intensive studies in modeling neuropsychiatric disorders especially autism spectrum disorder (ASD) in animals, many challenges remain. Genetic mutant mice have contributed substantially to the current understanding of the molecular and neural circuit mechanisms underlying ASD. However, the translational value of ASD mouse models in preclinical studies is limited to certain aspects of the disease due to the apparent differences in brain and behavior between rodents and humans. Non-human primates have been used to model ASD in recent years. However, a low reproduction rate due to a long reproductive cycle and a single birth per pregnancy, and an extremely high cost prohibit a wide use of them in preclinical studies. Canine model is an appealing alternative because of its complex and effective dog-human social interactions. In contrast to non-human primates, dog has comparable drug metabolism as humans and a high reproduction rate. In this study, we aimed to model ASD in experimental dogs by manipulating the Shank3 gene as SHANK3 mutations are one of most replicated genetic defects identified from ASD patients. Using CRISPR/Cas9 gene editing, we successfully generated and characterized multiple lines of Beagle Shank3 (bShank3) mutants that have been propagated for a few generations. We developed and validated a battery of behavioral assays that can be used in controlled experimental setting for mutant dogs. bShank3 mutants exhibited distinct and robust social behavior deficits including social withdrawal and reduced social interactions with humans, and heightened anxiety in different experimental settings (n = 27 for wild-type controls and n = 44 for mutants). We demonstrate the feasibility of producing a large number of mutant animals in a reasonable time frame. The robust and unique behavioral findings support the validity and value of a canine model to investigate the pathophysiology and develop treatments for ASD and potentially other psychiatric disorders.


Asunto(s)
Trastorno del Espectro Autista , Animales , Perros , Humanos , Trastorno del Espectro Autista/genética , Sistemas CRISPR-Cas/genética , Modelos Animales de Enfermedad , Edición Génica , Proteínas de Microfilamentos/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
3.
Mol Psychiatry ; 28(9): 3751-3759, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37848709

RESUMEN

Pupillary response, an important process in visual perception and social and emotional cognition, has been widely studied for understanding the neural mechanisms of neuropsychiatric disorders. However, there have been few studies on pupil response to social and non-social stimuli in animal models of neurodevelopmental disorders including autism spectrum disorder (ASD) and attention deficit hyperactivity disorder. Here, we developed a pupilometer using a robust eye feature-detection algorithm for real-time pupillometry in dogs. In a pilot study, we found that a brief light flash induced a less-pronounced and slower pupil dilation response in gene-edited dogs carrying mutations in Shank3; mutations of its ortholog in humans were repeatedly identified in ASD patients. We further found that obnoxious, loud firecracker sound of 120 dB induced a stronger and longer pupil dilation response in Shank3 mutant dogs, whereas a high reward food induced a weaker pupillary response in Shank3 mutants than in wild-type control dogs. In addition, we found that Shank3 mutants showed compromised pupillary synchrony during dog-human interaction. These findings of altered pupil response in Shank3 mutant dogs recapitulate the altered sensory responses in ASD patients. Thus, this study demonstrates the validity and value of the pupilometer for dogs, and provides an effective paradigm for studying the underlying neural mechanisms of ASD and potentially other psychiatric disorders.


Asunto(s)
Trastorno del Espectro Autista , Humanos , Perros , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/psicología , Pupila/fisiología , Proyectos Piloto , Emociones , Modelos Animales de Enfermedad
4.
Front Cell Neurosci ; 17: 1201295, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37538851

RESUMEN

Social isolation (SI) exerts diverse adverse effects on brain structure and function in humans. To gain an insight into the mechanisms underlying these effects, we conducted a systematic analysis of multiple brain regions from socially isolated and group-housed dogs, whose brain and behavior are similar to humans. Our transcriptomic analysis revealed reduced expression of myelin-related genes specifically in the white matter of prefrontal cortex (PFC) after SI during the juvenile stage. Despite these gene expression changes, myelin fiber organization in PFC remained unchanged. Surprisingly, we observed more mature oligodendrocytes and thicker myelin bundles in the somatosensory parietal cortex in socially isolated dogs, which may be linked to an increased expression of ADORA2A, a gene known to promote oligodendrocyte maturation. Additionally, we found a reduced expression of blood-brain barrier (BBB) structural components Aquaporin-4, Occludin, and Claudin1 in both PFC and parietal cortices, indicating BBB disruption after SI. In agreement with BBB disruption, myelin-related sphingolipids were increased in cerebrospinal fluid in the socially isolated group. These unexpected findings show that SI induces distinct alterations in oligodendrocyte development and shared disruption in BBB integrity in different cortices, demonstrating the value of dogs as a complementary animal model to uncover molecular mechanisms underlying SI-induced brain dysfunction.

5.
Cereb Cortex ; 33(20): 10546-10557, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37585733

RESUMEN

Both enhanced discrimination of low-level features of auditory stimuli and mutations of SHANK3 (a gene that encodes a synaptic scaffolding protein) have been identified in autism spectrum disorder patients. However, experimental evidence regarding whether SHANK3 mutations lead to enhanced neural processing of low-level features of auditory stimuli is lacking. The present study investigated this possibility by examining effects of Shank3 mutations on early neural processing of pitch (tone frequency) in dogs. We recorded electrocorticograms from wild-type and Shank3 mutant dogs using an oddball paradigm in which deviant tones of different frequencies or probabilities were presented along with other tones in a repetitive stream (standards). We found that, relative to wild-type dogs, Shank3 mutant dogs exhibited larger amplitudes of early neural responses to deviant tones and greater sensitivity to variations of deviant frequencies within 100 ms after tone onsets. In addition, the enhanced early neural responses to deviant tones in Shank3 mutant dogs were observed independently of the probability of deviant tones. Our findings highlight an essential functional role of Shank3 in modulations of early neural detection of novel sounds and offer new insights into the genetic basis of the atypical auditory information processing in autism patients.

6.
J Cell Biol ; 222(9)2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37389657

RESUMEN

Glutathionylation is a posttranslational modification involved in various molecular and cellular processes. However, it remains unknown whether and how glutathionylation regulates nervous system development. To identify critical regulators of synapse growth and development, we performed an RNAi screen and found that postsynaptic knockdown of glutathione transferase omega 1 (GstO1) caused significantly more synaptic boutons at the Drosophila neuromuscular junctions. Genetic and biochemical analysis revealed an increased level of glass boat bottom (Gbb), the Drosophila homolog of mammalian bone morphogenetic protein (BMP), in GstO1 mutants. Further experiments showed that GstO1 is a critical regulator of Gbb glutathionylation at cysteines 354 and 420, which promoted its degradation via the proteasome pathway. Moreover, the E3 ligase Ctrip negatively regulated the Gbb protein level by preferentially binding to glutathionylated Gbb. These results unveil a novel regulatory mechanism in which glutathionylation of Gbb facilitates its ubiquitin-mediated degradation. Taken together, our findings shed new light on the crosstalk between glutathionylation and ubiquitination of Gbb in synapse development.


Asunto(s)
Proteínas de Drosophila , Complejo de la Endopetidasa Proteasomal , Sinapsis , Animales , Drosophila , Unión Neuromuscular , Complejo de la Endopetidasa Proteasomal/genética , Sinapsis/fisiología , Proteínas de Drosophila/genética
7.
Cell Discov ; 9(1): 27, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36878905

RESUMEN

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that affects social interaction and behavior. Mutations in the gene encoding chromodomain helicase DNA-binding protein 8 (CHD8) lead to autism symptoms and macrocephaly by a haploinsufficiency mechanism. However, studies of small animal models showed inconsistent findings about the mechanisms for CHD8 deficiency-mediated autism symptoms and macrocephaly. Using the nonhuman primate as a model system, we found that CRISPR/Cas9-mediated CHD8 mutations in the embryos of cynomolgus monkeys led to increased gliogenesis to cause macrocephaly in cynomolgus monkeys. Disrupting CHD8 in the fetal monkey brain prior to gliogenesis increased the number of glial cells in newborn monkeys. Moreover, knocking down CHD8 via CRISPR/Cas9 in organotypic monkey brain slices from newborn monkeys also enhanced the proliferation of glial cells. Our findings suggest that gliogenesis is critical for brain size in primates and that abnormal gliogenesis may contribute to ASD.

8.
Mol Psychiatry ; 28(1): 191-201, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36434053

RESUMEN

An obvious consequence of the coronavirus disease (COVID-19) pandemic is the worldwide reduction in social interaction, which is associated with many adverse effects on health in humans from babies to adults. Although social development under normal or isolated environments has been studied since the 1940s, the mechanism underlying social isolation (SI)-induced brain dysfunction remains poorly understood, possibly due to the complexity of SI in humans and translational gaps in findings from animal models. Herein, we present a systematic review that focused on brain changes at the molecular, cellular, structural and functional levels induced by SI at different ages and in different animal models. SI studies in humans and animal models revealed common socioemotional and cognitive deficits caused by SI in early life and an increased occurrence of depression and anxiety induced by SI during later stages of life. Altered neurotransmission and neural circuitry as well as abnormal development and function of glial cells in specific brain regions may contribute to the abnormal emotions and behaviors induced by SI. We highlight distinct alterations in oligodendrocyte progenitor cell differentiation and oligodendrocyte maturation caused by SI in early life and later stages of life, respectively, which may affect neural circuit formation and function and result in diverse brain dysfunctions. To further bridge animal and human SI studies, we propose alternative animal models with brain structures and complex social behaviors similar to those of humans.


Asunto(s)
COVID-19 , Control de Infecciones , Pandemias , Aislamiento Social , Animales , Humanos , Conducta Animal , Encéfalo , Emociones
10.
Mamm Genome ; 34(2): 262-269, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36243810

RESUMEN

Cardiovascular diseases (CVD) are one of the leading causes of death worldwide. Eighty-five percent of CVD-associated deaths are due to heart attacks and stroke. Atherosclerosis leads to heart attack and stroke through a slow progression of lesion formation and luminal narrowing of arteries. Dogs are similar to humans in terms of their cardiovascular physiology, size, and anatomy. Dog models have been developed to recapitulate the complex phenotype of human patients and understand the underlying mechanism of CVD. Different methods, including high-fat, high-cholesterol diet and genetic modification, have been used to generate dog models of human CVD. Remarkably, the location and severity of atherosclerotic lesions in the coronary arteries and branches of the carotid arteries of dog models closely resemble those of human CVD patients. Overt clinical manifestations such as stroke caused by plaque rupture and thrombosis were observed in dog models. Thus, dog models can help define the pathophysiological mechanisms of atherosclerosis and develop potential strategy for preventing and treating CVD. In this review, we summarize the progress in generating and characterizing canine models to investigate CVD and discuss the advantages and limitations of canine CVD models.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Infarto del Miocardio , Placa Aterosclerótica , Accidente Cerebrovascular , Humanos , Perros , Animales , Enfermedades Cardiovasculares/genética , Aterosclerosis/genética , Placa Aterosclerótica/patología , Factores de Riesgo
11.
iScience ; 25(8): 104747, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35942104

RESUMEN

Tail wagging plays an important role in social interactions, e.g., dogs show asymmetrical tail wagging in response to different social stimuli. However, the effects of social cues on tail wagging and the intrinsic organization of wagging behavior remain largely unknown. Here, we developed a platform using a deep-learning-based motion-tracking technique to extract and analyze the movement trajectory of a dog's tail tip during dog-human interactions. Individual dogs exhibited unique and stable wagging characteristics. We further found that tail wagging developed asymmetry toward the right side over three days of dog-human interactions, suggesting that it is a time-sensitive indicator of social familiarity. In addition, wagging appeared to follow an attractor-like dynamic process consisting of stable states and unstable, transitional states. Together, these results revealed sophisticated characteristics and organization of a dog's tail-wagging behavior during interactions with humans, providing a useful paradigm for studying dogs' social behaviors and the underlying neural mechanisms.

12.
Mol Cell Proteomics ; 21(8): 100261, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35738554

RESUMEN

Brain development and function are governed by precisely regulated protein expressions in different regions. To date, multiregional brain proteomes have been systematically analyzed only for adult human and mouse brains. To understand the underpinnings of brain development and function, we generated proteomes from six regions of the postnatal brain at three developmental stages of domestic dogs (Canis familiaris), which are special among animals in terms of their remarkable human-like social cognitive abilities. Quantitative analysis of the spatiotemporal proteomes identified region-enriched synapse types at different developmental stages and differential myelination progression in different brain regions. Through integrative analysis of inter-regional expression patterns of orthologous proteins and genome-wide cis-regulatory element frequencies, we found that proteins related with myelination and hippocampus were highly correlated between dog and human but not between mouse and human, although mouse is phylogenetically closer to human. Moreover, the global expression patterns of neurodegenerative disease and autism spectrum disorder-associated proteins in dog brain more resemble human brain than in mouse brain. The high similarity of myelination and hippocampus-related pathways in dog and human at both proteomic and genetic levels may contribute to their shared social cognitive abilities. The inter-regional expression patterns of disease-associated proteins in the brain of different species provide important information to guide mechanistic and translational study using appropriate animal models.


Asunto(s)
Trastorno del Espectro Autista , Enfermedades Neurodegenerativas , Adulto , Animales , Encéfalo , Perros , Humanos , Ratones , Proteoma , Proteómica
13.
Sci China Life Sci ; 65(7): 1342-1356, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34705220

RESUMEN

Atherosclerotic cardiovascular disease resulting from dysregulated lipid metabolism is the leading cause of morbidity and mortality worldwide. Apolipoprotein E (ApoE) plays a critical role in cholesterol metabolism. Knockouts in lipid-metabolizing proteins including ApoE in multiple model organisms such as mice and rats exhibiting elevated levels of cholesterol have been widely used for dissecting the pathology of atherosclerosis, but few of these animal models exhibit advanced atherosclerotic plaques leading to ischemia-induced clinical symptoms, limiting their use for translational studies. Here we report hypercholesterolemia and severe atherosclerosis characterized by stenosis and occlusion of arteries, together with clinical manifestations of stroke and gangrene, in ApoE knockout dogs generated by CRISPR/Cas9 and cloned by somatic cell nuclear transfer technologies. Importantly, the hypercholesterolemia and atherosclerotic complications in F0 mutants are recapitulated in their offspring. As the ApoE-associated atherosclerosis and clinical manifestations in mutant dogs are more similar to that in human patients compared with those in other animal models, these mutant dogs will be invaluable in developing and evaluating new therapies, including endovascular procedures, against atherosclerosis and related disorders.


Asunto(s)
Aterosclerosis , Perros/genética , Hipercolesterolemia , Placa Aterosclerótica , Animales , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/metabolismo , Colesterol , Modelos Animales de Enfermedad , Humanos , Hipercolesterolemia/complicaciones , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Placa Aterosclerótica/genética , Ratas
14.
Trends Neurosci ; 44(9): 741-752, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34417060

RESUMEN

Calpains are evolutionarily conserved and widely expressed Ca2+-activated cysteine proteases that act at neutral pH. The activity of calpains is tightly regulated, given that their abnormal activation can have deleterious effects leading to promiscuous cleavage of various targets. Genetic mutations in the genes encoding calpains are associated with human diseases, while abnormally elevated Ca2+ levels promote Ca2+-dependent calpain activation in pathologies associated with ischemic insults and neurodegeneration. In this review, we discuss recent findings on the regulation of calpain activity and activation as revealed through pharmacological, genetic, and optogenetic approaches. Furthermore, we highlight studies elucidating the role of calpains in dendrite pruning and axon degeneration in the context of Ca2+ homeostasis. Finally, we discuss future directions for the study of calpains and potential therapeutic strategies for inhibiting calpain activity in neurodegenerative diseases.


Asunto(s)
Calcio , Calpaína , Calpaína/genética , Homeostasis , Humanos , Plasticidad Neuronal , Péptido Hidrolasas
15.
Cell Res ; 31(4): 433-449, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32848200

RESUMEN

Calcium-dependent proteolytic calpains are implicated in a variety of physiological processes, as well as pathologies associated with calcium overload. However, the mechanism by which calpain is activated remains elusive since intracellular calcium levels under physiological conditions do not reach the high concentration range required to trigger calpain activation. From a candidate screening using the abundance of the calpain target glutamate receptor GluRIIA at the Drosophila neuromuscular junction as a readout, we uncovered that calpain activity was inhibited upon knockdown of Ttm50, a subunit of the Tim23 complex known to be involved in the import of proteins across the mitochondrial inner membrane. Unexpectedly, Ttm50 and calpain are co-localized at calcium stores Golgi and endoplasmic reticulum (ER), and Ttm50 interacts with calpain via its C-terminal domain. This interaction is required for calpain localization at Golgi/ER, and increases calcium sensitivity of calpain by roughly an order of magnitude. Our findings reveal the regulation of calpain activation by Ttm50, and shed new light on calpain-associated pathologies.


Asunto(s)
Calcio/metabolismo , Calpaína/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Calpaína/química , Regulación hacia Abajo , Drosophila/metabolismo , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo
16.
Development ; 147(24)2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33234716

RESUMEN

The balance among different subtypes of glutamate receptors (GluRs) is crucial for synaptic function and plasticity at excitatory synapses. However, the mechanisms balancing synaptic GluR subtypes remain unclear. Herein, we show that the two subtypes of GluRs (A and B) expressed at Drosophila neuromuscular junction synapses mutually antagonize each other in terms of their relative synaptic levels and affect subsynaptic localization of each other, as shown by super-resolution microscopy. Upon temperature shift-induced neuromuscular junction plasticity, GluR subtype A increased but subtype B decreased with a timecourse of hours. Inhibition of the activity of GluR subtype A led to imbalance of GluR subtypes towards more GluRIIA. To gain a better understanding of the signalling pathways underlying the balance of GluR subtypes, we performed an RNA interference screen of candidate genes and found that postsynaptic-specific knockdown of dunce, which encodes cAMP phosphodiesterase, increased levels of GluR subtype A but decreased subtype B. Furthermore, bidirectional alterations of postsynaptic cAMP signalling resulted in the same antagonistic regulation of the two GluR subtypes. Our findings thus identify a direct role of postsynaptic cAMP signalling in control of the plasticity-related balance of GluRs.


Asunto(s)
Proteínas de Drosophila/genética , Plasticidad Neuronal/genética , Receptores Ionotrópicos de Glutamato/genética , Sinapsis/genética , Animales , AMP Cíclico/genética , Drosophila melanogaster/genética , Unión Neuromuscular/genética , Unión Neuromuscular/crecimiento & desarrollo , Receptores de Glutamato/genética , Transducción de Señal/genética , Transmisión Sináptica/genética
17.
J Neurosci ; 40(14): 2817-2827, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32122953

RESUMEN

Perturbations to postsynaptic glutamate receptors (GluRs) trigger retrograde signaling to precisely increase presynaptic neurotransmitter release, maintaining stable levels of synaptic strength, a process referred to as homeostatic regulation. However, the structural change of homeostatic regulation remains poorly defined. At wild-type Drosophila neuromuscular junction synapse, there is one Bruchpilot (Brp) ring detected by superresolution microscopy at active zones (AZs). In the present study, we report multiple Brp rings (i.e., multiple T-bars seen by electron microscopy) at AZs of both male and female larvae when GluRs are reduced. At GluRIIC-deficient neuromuscular junctions, quantal size was reduced but quantal content was increased, indicative of homeostatic presynaptic potentiation. Consistently, multiple Brp rings at AZs were observed in the two classic synaptic homeostasis models (i.e., GluRIIA mutant and pharmacological blockade of GluRIIA activity). Furthermore, postsynaptic overexpression of the cell adhesion protein Neuroligin 1 partially rescued multiple Brp rings phenotype. Our study thus supports that the formation of multiple Brp rings at AZs might be a structural basis for synaptic homeostasis.SIGNIFICANCE STATEMENT Synaptic homeostasis is a conserved fundamental mechanism to maintain efficient neurotransmission of neural networks. Active zones (AZs) are characterized by an electron-dense cytomatrix, which is largely composed of Bruchpilot (Brp) at the Drosophila neuromuscular junction synapses. It is not clear how the structure of AZs changes during homeostatic regulation. To address this question, we examined the structure of AZs by superresolution microscopy and electron microscopy during homeostatic regulation. Our results reveal multiple Brp rings at AZs of glutamate receptor-deficient neuromuscular junction synapses compared with single Brp ring at AZs in wild type (WT). We further show that Neuroligin 1-mediated retrograde signaling regulates multiple Brp ring formation at glutamate receptor-deficient synapses. This study thus reveals a regulatory mechanism for synaptic homeostasis.


Asunto(s)
Homeostasis/fisiología , Unión Neuromuscular/fisiología , Unión Neuromuscular/ultraestructura , Sinapsis/metabolismo , Sinapsis/ultraestructura , Transmisión Sináptica/fisiología , Animales , Moléculas de Adhesión Celular Neuronal/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Femenino , Masculino , Receptores de Glutamato/metabolismo
18.
Magn Reson Imaging ; 68: 148-157, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31945416

RESUMEN

Canines, which exhibit similar emotional and social processing to humans, are becoming one of the preferred animal models for neuroscience research. Beagles are the most common laboratory canine, thanks to their moderate size, docile nature, and strong immunity. However, there is currently no MRI brain template for the purebred Beagle, which hinders their use in studies involving neuroimaging. Here, we present the Beagle Brain Template (BBT), which consists of high-resolution in vivo T1-weighted and T2-weighted templates, as well as a myelin template, generated from purebred Beagles. We also present a normalized pipeline for mapping individual structure images onto the BBT space. The BBT shows low variation in the tissue probability map and provides descriptive statistics with smaller variability of brain tissue volumes and brain sizes than that of existing templates. This high-resolution purebred canine brain template lays the foundation for future studies aimed at in vivo analyses of the brain structure and function of the Beagle dogs.


Asunto(s)
Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética , Neuroimagen , Sustancia Blanca/diagnóstico por imagen , Animales , Perros , Procesamiento de Imagen Asistido por Computador , Masculino , Modelos Animales , Vaina de Mielina , Neurociencias , Probabilidad
19.
Transl Psychiatry ; 9(1): 267, 2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31636273

RESUMEN

Despite the substantial progress made in identifying genetic defects in autism spectrum disorder (ASD), the etiology for majority of ASD individuals remains elusive. Maternal exposure to valproic acid (VPA), a commonly prescribed antiepileptic drug during pregnancy in human, has long been considered a risk factor to contribute to ASD susceptibility in offspring from epidemiological studies in humans. The similar exposures in murine models have provided tentative evidence to support the finding from human epidemiology. However, the apparent difference between rodent and human poses a significant challenge to extrapolate the findings from rodent models to humans. Here we report for the first time the neurodevelopmental and behavioral outcomes of maternal VPA exposure in non-human primates. Monkey offspring from the early maternal VPA exposure have significantly reduced NeuN-positive mature neurons in prefrontal cortex (PFC) and cerebellum and the Ki67-positive proliferating neuronal precursors in the cerebellar external granular layer, but increased GFAP-positive astrocytes in PFC. Transcriptome analyses revealed that maternal VPA exposure disrupted the expression of genes associated with neurodevelopment in embryonic brain in offspring. VPA-exposed juvenile offspring have variable presentations of impaired social interaction, pronounced stereotypies, and more attention on nonsocial stimuli by eye tracking analysis. Our findings in non-human primates provide the best evidence so far to support causal link between maternal VPA exposure and neurodevelopmental defects and ASD susceptibility in humans.


Asunto(s)
Trastorno del Espectro Autista/inducido químicamente , Neurogénesis/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Ácido Valproico/efectos adversos , Animales , Trastorno del Espectro Autista/psicología , Conducta Animal , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Macaca fascicularis , Embarazo , Efectos Tardíos de la Exposición Prenatal/psicología
20.
J Neurosci ; 39(15): 2776-2791, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30705102

RESUMEN

Calpains are calcium-dependent, cytosolic proteinases active at neutral pH. They do not degrade but cleave substrates at limited sites. Calpains are implicated in various pathologies, such as ischemia, injuries, muscular dystrophy, and neurodegeneration. Despite so, the physiological function of calpains remains to be clearly defined. Using the neuromuscular junction of Drosophila of both sexes as a model, we performed RNAi screening and uncovered that calpains negatively regulated protein levels of the glutamate receptor GluRIIA but not GluRIIB. We then showed that calpains enrich at the postsynaptic area, and the calcium-dependent activation of calpains induced cleavage of GluRIIA at Q788 of its C terminus. Further genetic and biochemical experiments revealed that different calpains genetically and physically interact to form a protein complex. The protein complex was required for the proteinase activation to downregulate GluRIIA. Our data provide a novel insight into the mechanisms by which different calpains act together as a complex to specifically control GluRIIA levels and consequently synaptic function.SIGNIFICANCE STATEMENT Calpain has been implicated in neural insults and neurodegeneration. However, the physiological function of calpains in the nervous system remains to be defined. Here, we show that calpain enriches at the postsynaptic area and negatively and specifically regulates GluRIIA, but not IIB, level during development. Calcium-dependent activation of calpain cleaves GluRIIA at Q788 of its C terminus. Different calpains constitute an active protease complex to cleave its target. This study reveals a critical role of calpains during development to specifically cleave GluRIIA at synapses and consequently regulate synaptic function.


Asunto(s)
Calpaína/genética , Calpaína/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo , Animales , Señalización del Calcio/genética , Regulación hacia Abajo/genética , Femenino , Inmunohistoquímica , Masculino , Músculos/metabolismo , Optogenética , Péptido Hidrolasas/metabolismo , Interferencia de ARN , Especificidad por Sustrato , Sinapsis/genética , Sinapsis/metabolismo , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...