Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 161
1.
Mol Neurobiol ; 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38823000

In this study, we aimed to work through the key genes involved in the process of pyroptosis in Alzheimer's disease (AD) to identify potential biomarkers using bioinformatics technology and further explore the underlying molecular mechanisms. The transcriptome data of brain tissue in AD patients were screened from the GEO database, and pyroptosis-related genes were analyzed. The functions of differential genes were analyzed by enrichment analysis and protein-protein interaction. The diagnostic model was established using LASSO and logistic regression analysis, and the correlation of clinical data was analyzed. Based on single-cell analysis of brain tissues of patients with AD, immunofluorescence and western blotting were used to explore the key cells affected by the hub gene. After GSEA, qRT-PCR, western blotting, LDH, ROS, and JC-1 were used to investigate the potential mechanism of the hub gene on pyroptosis. A total of 15 pyroptosis differentially expressed genes were identified. A prediction model consisting of six genes was established by LASSO and logistic regression analysis, and the area under the curve was up to 0.81. As a hub gene, CHMP4B was negatively correlated with the severity of AD. CHMP4B expression was decreased in the hippocampal tissue of patients with AD and mice. Single-cell analysis showed that CHMP4B was downregulated in AD microglia. Overexpression of CHMP4B reduced the release of LDH and ROS and restored mitochondrial membrane potential, thereby alleviating the inflammatory response during microglial pyroptosis. In summary, CHMP4B as a hub gene provides a new strategy for the diagnosis and treatment of AD.

2.
Microorganisms ; 12(5)2024 May 07.
Article En | MEDLINE | ID: mdl-38792773

Plant growth-promoting rhizobacterial strain FP607T was isolated from the rhizosphere of beets in Wuhan, China. Strain FP607T exhibited significant antagonism toward several phytopathogenic bacteria, indicating that FP607T may produce antimicrobial metabolites and has a stronger biocontrol efficacy against plant pathogens. Growth-promoting tests showed that FP607T produced indole-3-acetic acid (IAA), NH3, and ferritin. The genome sequence of strain FP607T was 6,590,972 bp long with 59.0% G + C content. The optimum temperature range was 25-30 °C, and the optimum pH was 7. The cells of strain FP607T were Gram-negative, short, and rod-shaped, with polar flagella. The colonies on the King's B (KB) agar plates were light yellow, smooth, and circular, with regular edges. A phylogenetic analysis of the 16S rRNA sequence and a multilocus sequence analysis (MLSA) showed that strain FP607T was most closely related to the type of strain Pseudomonas farris SWRI79T. Based on a polyphasic taxonomic approach, strain FP607T was identified as a novel species within the genus Pseudomonas, for which the name Pseudomonas wuhanensis sp. nov. was proposed. The type of strain used was FP607T (JCM 35688, CGMCC 27743, and ACCC 62446).

3.
PLoS One ; 19(4): e0298080, 2024.
Article En | MEDLINE | ID: mdl-38635657

Inclusions containing TAR DNA binding protein 43 (TDP-43) are a pathological hallmark of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). One of the disease-specific features of TDP-43 inclusions is the aberrant phosphorylation of TDP-43 at serines 409/410 (pS409/410). Here, we developed rabbit monoclonal antibodies (mAbs) that specifically detect pS409/410-TDP-43 in multiple model systems and FTD/ALS patient samples. Specifically, we identified three mAbs (26H10, 2E9 and 23A1) from spleen B cell clones that exhibit high specificity and sensitivity to pS409/410-TDP-43 peptides in an ELISA assay. Biochemical analyses revealed that pS409/410 of recombinant TDP-43 and of exogenous 25 kDa TDP-43 C-terminal fragments in cultured HEK293T cells are detected by all three mAbs. Moreover, the mAbs detect pS409/410-positive TDP-43 inclusions in the brains of FTD/ALS patients and mouse models of TDP-43 proteinopathy by immunohistochemistry. Our findings indicate that these mAbs are a valuable resource for investigating TDP-43 pathology both in vitro and in vivo.


Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , TDP-43 Proteinopathies , Mice , Animals , Humans , Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/pathology , Antibodies, Monoclonal , HEK293 Cells , DNA-Binding Proteins/genetics
5.
Am J Chin Med ; 52(1): 231-252, 2024.
Article En | MEDLINE | ID: mdl-38328828

Berberine has been demonstrated to alleviate cerebral ischemia/reperfusion injury, but its neuroprotective mechanism has yet to be understood. Studies have indicated that ischemic neuronal damage was frequently driven by autophagic/lysosomal dysfunction, which could be restored by boosting transcription factor EB (TFEB) nuclear translocation. Therefore, this study investigated the pharmacological effects of berberine on TFEB-regulated autophagic/lysosomal signaling in neurons after cerebral stroke. A rat model of ischemic stroke and a neuronal ischemia model in HT22 cells were prepared using middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation (OGD), respectively. Berberine was pre-administered at a dose of 100[Formula: see text]mg/kg/d for three days in rats and 90[Formula: see text][Formula: see text]M in HT22 neurons for 12[Formula: see text]h. 24[Formula: see text]h after MCAO and 2[Formula: see text]h after OGD, the penumbral tissues and OGD neurons were obtained to detect nuclear and cytoplasmic TFEB, and the key proteins in the autophagic/lysosomal pathway were examined using western blot and immunofluorescence, respectively. Meanwhile, neuron survival, infarct volume, and neurological deficits were assessed to evaluate the therapeutic efficacy. The results showed that berberine prominently facilitated TFEB nuclear translocation, as indicated by increased nuclear expression in penumbral neurons as well as in OGD HT22 cells. Consequently, both autophagic activity and lysosomal capacity were simultaneously augmented to alleviate the ischemic injury. However, berberine-conferred neuroprotection could be greatly counteracted by lysosomal inhibitor Bafilomycin A1 (Baf-A1). Meanwhile, autophagy inhibitor 3-Methyladenine (3-MA) also slightly neutralized the pharmacological effect of berberine on ameliorating autophagic/lysosomal dysfunction. Our study suggests that berberine-induced neuroprotection against ischemic stroke is elicited by enhancing autophagic flux via facilitation of TFEB nuclear translocation in neurons.


Berberine , Brain Injuries , Brain Ischemia , Ischemic Stroke , Reperfusion Injury , Stroke , Rats , Animals , Berberine/pharmacology , Berberine/therapeutic use , Autophagy , Stroke/drug therapy , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Reperfusion Injury/drug therapy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/pharmacology
6.
Sci Transl Med ; 16(730): eadf9735, 2024 Jan 17.
Article En | MEDLINE | ID: mdl-38232138

Genetic variation at the transmembrane protein 106B gene (TMEM106B) has been linked to risk of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) through an unknown mechanism. We found that presence of the TMEM106B rs3173615 protective genotype was associated with longer survival after symptom onset in a postmortem FTLD-TDP cohort, suggesting a slower disease course. The seminal discovery that filaments derived from TMEM106B is a common feature in aging and, across a range of neurodegenerative disorders, suggests that genetic variants in TMEM106B could modulate disease risk and progression through modulating TMEM106B aggregation. To explore this possibility and assess the pathological relevance of TMEM106B accumulation, we generated a new antibody targeting the TMEM106B filament core sequence. Analysis of postmortem samples revealed that the TMEM106B rs3173615 risk allele was associated with higher TMEM106B core accumulation in patients with FTLD-TDP. In contrast, minimal TMEM106B core deposition was detected in carriers of the protective allele. Although the abundance of monomeric full-length TMEM106B was unchanged, carriers of the protective genotype exhibited an increase in dimeric full-length TMEM106B. Increased TMEM106B core deposition was also associated with enhanced TDP-43 dysfunction, and interactome data suggested a role for TMEM106B core filaments in impaired RNA transport, local translation, and endolysosomal function in FTLD-TDP. Overall, these findings suggest that prevention of TMEM106B core accumulation is central to the mechanism by which the TMEM106B protective haplotype reduces disease risk and slows progression.


Frontotemporal Dementia , Humans , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Polymorphism, Single Nucleotide/genetics
7.
Sci Transl Med ; 16(734): eadg7162, 2024 02 14.
Article En | MEDLINE | ID: mdl-38277467

Functional loss of TDP-43, an RNA binding protein genetically and pathologically linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), leads to the inclusion of cryptic exons in hundreds of transcripts during disease. Cryptic exons can promote the degradation of affected transcripts, deleteriously altering cellular function through loss-of-function mechanisms. Here, we show that mRNA transcripts harboring cryptic exons generated de novo proteins in TDP-43-depleted human iPSC-derived neurons in vitro, and de novo peptides were found in cerebrospinal fluid (CSF) samples from patients with ALS or FTD. Using coordinated transcriptomic and proteomic studies of TDP-43-depleted human iPSC-derived neurons, we identified 65 peptides that mapped to 12 cryptic exons. Cryptic exons identified in TDP-43-depleted human iPSC-derived neurons were predictive of cryptic exons expressed in postmortem brain tissue from patients with TDP-43 proteinopathy. These cryptic exons produced transcript variants that generated de novo proteins. We found that the inclusion of cryptic peptide sequences in proteins altered their interactions with other proteins, thereby likely altering their function. Last, we showed that 18 de novo peptides across 13 genes were present in CSF samples from patients with ALS/FTD spectrum disorders. The demonstration of cryptic exon translation suggests new mechanisms for ALS/FTD pathophysiology downstream of TDP-43 dysfunction and may provide a potential strategy to assay TDP-43 function in patient CSF.


Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/genetics , Peptides , Proteomics
8.
Trends Neurosci ; 46(12): 1025-1041, 2023 12.
Article En | MEDLINE | ID: mdl-37827960

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are considered to be part of a disease spectrum that is associated with causative mutations and risk variants in a wide range of genes. Mounting evidence indicates that several of these genes are linked to the endolysosomal system, highlighting the importance of this pathway in ALS/FTD. Although many studies have focused on how disruption of this pathway impacts on autophagy, recent findings reveal that this may not be the whole picture: specifically, disrupting autophagy may not be sufficient to induce disease, whereas disrupting the endolysosomal system could represent a crucial pathogenic driver. In this review we discuss the connections between ALS/FTD and the endolysosomal system, including a breakdown of how disease-associated genes are implicated in this pathway. We also explore the potential downstream consequences of disrupting endolysosomal activity in the brain, outside of an effect on autophagy.


Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Frontotemporal Dementia/genetics , Mutation , Autophagy , C9orf72 Protein/genetics
9.
Cell Rep ; 42(8): 112822, 2023 08 29.
Article En | MEDLINE | ID: mdl-37471224

C9orf72 repeat expansions are the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Poly(GR) proteins are toxic to neurons by forming cytoplasmic inclusions that sequester RNA-binding proteins including stress granule (SG) proteins. However, little is known of the factors governing poly(GR) inclusion formation. Here, we show that poly(GR) infiltrates a finely tuned network of protein-RNA interactions underpinning SG formation. It interacts with G3BP1, the key driver of SG assembly and a protein we found is critical for poly(GR) inclusion formation. Moreover, we discovered that N6-methyladenosine (m6A)-modified mRNAs and m6A-binding YTHDF proteins not only co-localize with poly(GR) inclusions in brains of c9FTD/ALS mouse models and patients with c9FTD, they promote poly(GR) inclusion formation via the incorporation of RNA into the inclusions. Our findings thus suggest that interrupting interactions between poly(GR) and G3BP1 or YTHDF1 proteins or decreasing poly(GR) altogether represent promising therapeutic strategies to combat c9FTD/ALS pathogenesis.


Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Animals , Mice , Humans , Amyotrophic Lateral Sclerosis/pathology , DNA Helicases/metabolism , Stress Granules , DNA Repeat Expansion , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Helicases/genetics , RNA Helicases/metabolism , RNA Recognition Motif Proteins/metabolism , Frontotemporal Dementia/metabolism , Inclusion Bodies/metabolism , Heat-Shock Proteins/metabolism , RNA/metabolism , C9orf72 Protein/genetics , C9orf72 Protein/metabolism
11.
IMA Fungus ; 14(1): 13, 2023 Jul 06.
Article En | MEDLINE | ID: mdl-37415259

Cordyceps is a diverse genus of insect pathogenic fungi, with about 180 accepted species, including some well-known ones used as ethnic medicine and/or functional food. Nevertheless, mitogenomes are only available for four members of the genus. The current study reports the mitogenome of Cordyceps blackwelliae, a newly described entomopathogenic fungus. The 42,257-bp mitogenome of the fungus encoded genes typically found in fungal mitogenomes, and a total of 14 introns inserted into seven genes, including cob (1 intron), cox1 (4), cox3 (3), nad1 (1), nad4 (1), nad5 (1), and rnl (3). RNA-Seq analysis revealed differential expression of mitochondrial genes and supported annotations resulting from in silico analysis. There was clear evidence for polycistronic transcription and alternative splicing of mitochondrial genes. Comparison among mitogenomes of five different Cordyceps species (i.e., C. blackwelliae, C. chanhua, C. militaris, C. pruinosa, and C. tenuipes) revealed a high synteny, with mitogenome size expansion correlating with intron insertions. Different mitochondrial protein-coding genes showed variable degrees of genetic differentiation among these species, but they were all under purifying selection. Mitochondrial phylogeny based on either nucleotide or amino acid sequences confirmed the taxonomic position of C. blackwelliae in Cordycipitaceae, clustering together with C. chanhua. This study promotes our understanding of fungal evolution in Cordyceps.

12.
Mol Neurobiol ; 60(7): 4004-4016, 2023 Jul.
Article En | MEDLINE | ID: mdl-37010807

Intronic G4C2 hexanucleotide repeat expansions (HRE) of C9orf72 are the most common cause of familial variants of frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS). G4C2 HREs in C9orf72 undergo non-canonical repeat-associated translation, producing dipeptide repeat (DPR) proteins, with various deleterious impacts on cellular homeostasis. While five different DPRs are produced, poly(glycine-arginine) (GR) is amongst the most toxic and is the only DPR to accumulate in the associated clinically relevant anatomical locations of the brain. Previous work has demonstrated the profound effects of a poly (GR) model of C9orf72 FTD/ALS, including motor impairment, memory deficits, neurodegeneration, and neuroinflammation. Neuroinflammation is hypothesized to be a driving factor in the disease course; microglia activation is present prior to symptom onset and persists throughout the disease. Here, using an established mouse model of C9orf72 FTD/ALS, we investigate the contributions of the nod-like receptor pyrin-containing 3 (NLRP3) inflammasome in the pathogenesis of FTD/ALS. We find that inflammasome-mediated neuroinflammation is increased with microglial activation, cleavage of caspase-1, production of IL-1ß, and upregulation of Cxcl10 in the brain of C9orf72 FTD/ALS mice. Excitingly, we find that genetic ablation of Nlrp3 significantly improved survival, protected behavioral deficits, and prevented neurodegeneration suggesting a novel mechanism involving HRE-mediated induction of innate immunity. The findings provide experimental evidence of the integral role of HRE in inflammasome-mediated innate immunity in the C9orf72 variant of FTD/ALS pathogenesis and suggest the NLRP3 inflammasome as a therapeutic target.


Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Animals , Mice , Amyotrophic Lateral Sclerosis/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Microglia/metabolism , Inflammasomes , C9orf72 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Neuroinflammatory Diseases , DNA Repeat Expansion/genetics , Dipeptides
13.
PLoS Biol ; 21(3): e3002028, 2023 03.
Article En | MEDLINE | ID: mdl-36930682

A major function of TAR DNA-binding protein-43 (TDP-43) is to repress the inclusion of cryptic exons during RNA splicing. One of these cryptic exons is in UNC13A, a genetic risk factor for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The accumulation of cryptic UNC13A in disease is heightened by the presence of a risk haplotype located within the cryptic exon itself. Here, we revealed that TDP-43 extreme N-terminus is important to repress UNC13A cryptic exon inclusion. Further, we found hnRNP L, hnRNP A1, and hnRNP A2B1 bind UNC13A RNA and repress cryptic exon inclusion, independently of TDP-43. Finally, higher levels of hnRNP L protein associate with lower burden of UNC13A cryptic RNA in ALS/FTD brains. Our findings suggest that while TDP-43 is the main repressor of UNC13A cryptic exon inclusion, other hnRNPs contribute to its regulation and may potentially function as disease modifiers.


Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Heterogeneous-Nuclear Ribonucleoprotein L , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Exons/genetics , Frontotemporal Dementia/genetics , Heterogeneous-Nuclear Ribonucleoproteins/genetics , RNA , Nerve Tissue Proteins/metabolism
14.
Neuron ; 111(8): 1222-1240.e9, 2023 04 19.
Article En | MEDLINE | ID: mdl-36917977

Mitochondrial dysfunction and axon loss are hallmarks of neurologic diseases. Gasdermin (GSDM) proteins are executioner pore-forming molecules that mediate cell death, yet their roles in the central nervous system (CNS) are not well understood. Here, we find that one GSDM family member, GSDME, is expressed by both mouse and human neurons. GSDME plays a role in mitochondrial damage and axon loss. Mitochondrial neurotoxins induced caspase-dependent GSDME cleavage and rapid localization to mitochondria in axons, where GSDME promoted mitochondrial depolarization, trafficking defects, and neurite retraction. Frontotemporal dementia (FTD)/amyotrophic lateral sclerosis (ALS)-associated proteins TDP-43 and PR-50 induced GSDME-mediated damage to mitochondria and neurite loss. GSDME knockdown protected against neurite loss in ALS patient iPSC-derived motor neurons. Knockout of GSDME in SOD1G93A ALS mice prolonged survival, ameliorated motor dysfunction, rescued motor neuron loss, and reduced neuroinflammation. We identify GSDME as an executioner of neuronal mitochondrial dysfunction that may contribute to neurodegeneration.


Amyotrophic Lateral Sclerosis , Mice , Animals , Humans , Amyotrophic Lateral Sclerosis/metabolism , Gasdermins , Mice, Knockout , Motor Neurons/metabolism , Axons/metabolism
15.
Shanghai Kou Qiang Yi Xue ; 32(6): 603-608, 2023 Dec.
Article Zh | MEDLINE | ID: mdl-38494968

PURPOSE: To investigate the feasibility and safety of the deep circumflex iliac artery (DCIA) derived chimeric flap through the anatomical study of the blood vessels and perforating branches in the ilioinguinal region, and to provide the basis for selecting different DCIA chimeric flap schemes according to the difficulty of surgery, defect conditions and repair needs. METHODS: Six Chinese adult specimens were dissected by retrograde perfusion of red latex into bilateral femoral arteries. At the same time, the length, diameter and main branch position of DCIA vascular pedicle were measured in 12 lower limb CTAs, and compared with the anatomical data. Six patients with oral tumors accompanied by mandibular defects who were treated in the Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University from July 2020 to November 2021 were repaired and reconstructed with the chimeric iliac myofascial flap. The postoperative appearance and occlusal function of the recipient area were observed. SPSS 19.0 software package was used for data analysis. RESULTS: A total of 19 DCIA perforators with an external diameter of ≥ 0.5 mm were found in 12 specimens of ilioinguinal region. These perforators were distributed in the 5 cm×3 cm area, inside the ilium and 5cm behind the anterior superior iliac spine. The length of DCIA vascular pedicle was (6.73±1.06) cm. The measured value of the external diameter of the starting position of the vascular pedicle was (2.55±0.29) mm. The outer diameter of DCIA skin perforator penetrating deep fascia was (1.12±0.14) mm. In the CTA analysis of 12 lower limbs, it was found that the length of DCIA vascular pedicle was (6.98±0.62) cm. The measured diameter at the original position of vascular pedicle was (2.35±0.20) mm. Six cases of mandibular defects were repaired with iliac internal oblique fascia mosaic flap. Six cases of lliac flap survived successfully after operation. Follow up for 6 to 24 months (average 12 months) showed that the mandibular shape and function recovered well, the intraoral myofascial flap became mucosal, and the implanted iliac bone showed no significant volume change on CT after operation. Walking and weight bearing in donor area were basically normal, and no abdominal hernia occurred. CONCLUSIONS: DCIA and its main branches have a relatively constant course and distribution in the ilioinguinal region. According to the conditions of different defect areas, different tissue types of chimeric flaps based on DCIA can be prepared to meet the repair requirements. The donor site complications can be controlled, and it is an ideal choice to repair mandibular defects.


Plastic Surgery Procedures , Adult , Humans , Ilium , Surgical Flaps/blood supply , Thigh , Muscles
16.
Proc Natl Acad Sci U S A ; 119(49): e2123487119, 2022 12 06.
Article En | MEDLINE | ID: mdl-36454749

Hexanucleotide G4C2 repeat expansions in the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Dipeptide repeat proteins (DPRs) generated by translation of repeat-containing RNAs show toxic effects in vivo as well as in vitro and are key targets for therapeutic intervention. We generated human antibodies that bind DPRs with high affinity and specificity. Anti-GA antibodies engaged extra- and intra-cellular poly-GA and reduced aggregate formation in a poly-GA overexpressing human cell line. However, antibody treatment in human neuronal cultures synthesizing exogenous poly-GA resulted in the formation of large extracellular immune complexes and did not affect accumulation of intracellular poly-GA aggregates. Treatment with antibodies was also shown to directly alter the morphological and biochemical properties of poly-GA and to shift poly-GA/antibody complexes to more rapidly sedimenting ones. These alterations were not observed with poly-GP and have important implications for accurate measurement of poly-GA levels including the need to evaluate all centrifugation fractions and disrupt the interaction between treatment antibodies and poly-GA by denaturation. Targeting poly-GA and poly-GP in two mouse models expressing G4C2 repeats by systemic antibody delivery for up to 16 mo was well-tolerated and led to measurable brain penetration of antibodies. Long-term treatment with anti-GA antibodies produced improvement in an open-field movement test in aged C9orf72450 mice. However, chronic administration of anti-GA antibodies in AAV-(G4C2)149 mice was associated with increased levels of poly-GA detected by immunoassay and did not significantly reduce poly-GA aggregates or alleviate disease progression in this model.


Genes, Regulator , Poly A , Animals , Humans , Mice , Antigen-Antibody Complex , C9orf72 Protein/genetics , Dipeptides , Disease Models, Animal
17.
Hortic Res ; 9: uhac189, 2022.
Article En | MEDLINE | ID: mdl-36338850

The Actinidia (kiwifruit) is an emerging fruit plant that is severely affected by salt stress in northern China. Plants have evolved several signaling network mechanisms to cope with the detrimental effects of salt stress. To date, no reported work is available on metabolic and molecular mechanisms involved in kiwifruit salt tolerance. Therefore, the present study aims to decipher intricate adaptive responses of two contrasting salt tolerance kiwifruit species Actinidia valvata [ZMH (an important genotype), hereafter referred to as R] and Actinidia deliciosa ['Hayward' (an important green-fleshed cultivar), hereafter referred to as H] under 0.4% (w/w) salt stress for time courses of 0, 12, 24, and 72 hours (hereafter refered to as h) by combined transcriptome and metabolome analysis. Data revealed that kiwifruit displayed specific enrichment of differentially expressed genes (DEGs) under salt stress. Interestingly, roots of R plants showed a differential expression pattern for up-regulated genes. The KEGG pathway analysis revealed the enrichment of DEGs related to plant hormone signal transduction, glycine metabolism, serine and threonine metabolism, glutathione metabolism, and pyruvate metabolism in the roots of R under salt stress. The WGCNA resulted in the identification of five candidate genes related to glycine betaine (GB), pyruvate, total soluble sugars (TSS), and glutathione biosynthesis in kiwifruit. An integrated study of transcriptome and metabolome identified several genes encoding metabolites involved in pyruvate metabolism. Furthermore, several genes encoding transcription factors were mainly induced in R under salt stress. Functional validation results for overexpression of a candidate gene betaine aldehyde dehydrogenase (AvBADH, R_transcript_80484) from R showed significantly improved salt tolerance in Arabidopsis thaliana (hereafter referred to as At) and Actinidia chinensis ['Hongyang' (an important red-fleshed cultivar), hereafter referred to as Ac] transgenic plants than in WT plants. All in all, salt stress tolerance in kiwifruit roots is an intricate regulatory mechanism that consists of several genes encoding specific metabolites.

18.
Proc Natl Acad Sci U S A ; 119(48): e2210532119, 2022 11 29.
Article En | MEDLINE | ID: mdl-36409902

A hexanucleotide repeat expansion in intron 1 of the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia, or c9ALS/FTD. The RNA transcribed from the expansion, r(G4C2)exp, causes various pathologies, including intron retention, aberrant translation that produces toxic dipeptide repeat proteins (DPRs), and sequestration of RNA-binding proteins (RBPs) in RNA foci. Here, we describe a small molecule that potently and selectively interacts with r(G4C2)exp and mitigates disease pathologies in spinal neurons differentiated from c9ALS patient-derived induced pluripotent stem cells (iPSCs) and in two c9ALS/FTD mouse models. These studies reveal a mode of action whereby a small molecule diminishes intron retention caused by the r(G4C2)exp and allows the liberated intron to be eliminated by the nuclear RNA exosome, a multi-subunit degradation complex. Our findings highlight the complexity of mechanisms available to RNA-binding small molecules to alleviate disease pathologies and establishes a pipeline for the design of brain penetrant small molecules targeting RNA with novel modes of action in vivo.


Exosomes , Frontotemporal Dementia , Animals , Mice , Frontotemporal Dementia/metabolism , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , RNA/genetics , Exosomes/metabolism , Blood-Brain Barrier/metabolism , Exosome Multienzyme Ribonuclease Complex/metabolism , Brain/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA, Nuclear
19.
Science ; 378(6615): 94-99, 2022 10 07.
Article En | MEDLINE | ID: mdl-36201573

Frontotemporal dementia and amyotrophic lateral sclerosis (FTD-ALS) are associated with both a repeat expansion in the C9orf72 gene and mutations in the TANK-binding kinase 1 (TBK1) gene. We found that TBK1 is phosphorylated in response to C9orf72 poly(Gly-Ala) [poly(GA)] aggregation and sequestered into inclusions, which leads to a loss of TBK1 activity and contributes to neurodegeneration. When we reduced TBK1 activity using a TBK1-R228H (Arg228→His) mutation in mice, poly(GA)-induced phenotypes were exacerbated. These phenotypes included an increase in TAR DNA binding protein 43 (TDP-43) pathology and the accumulation of defective endosomes in poly(GA)-positive neurons. Inhibiting the endosomal pathway induced TDP-43 aggregation, which highlights the importance of this pathway and TBK1 activity in pathogenesis. This interplay between C9orf72, TBK1, and TDP-43 connects three different facets of FTD-ALS into one coherent pathway.


Amyotrophic Lateral Sclerosis , C9orf72 Protein , DNA-Binding Proteins , Frontotemporal Dementia , Protein Serine-Threonine Kinases , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , DNA Repeat Expansion , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endosomes/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Mice , Mutation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
20.
Sci Transl Med ; 14(662): eabq3215, 2022 09 14.
Article En | MEDLINE | ID: mdl-36103513

Arginine-rich dipeptide repeat proteins (R-DPRs), abnormal translational products of a GGGGCC hexanucleotide repeat expansion in C9ORF72, play a critical role in C9ORF72-related amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), the most common genetic form of the disorders (c9ALS/FTD). R-DPRs form liquid condensates in vitro, induce stress granule formation in cultured cells, aggregate, and sometimes coaggregate with TDP-43 in postmortem tissue from patients with c9ALS/FTD. However, how these processes are regulated is unclear. Here, we show that loss of poly(ADP-ribose) (PAR) suppresses neurodegeneration in c9ALS/FTD fly models and neurons differentiated from patient-derived induced pluripotent stem cells. Mechanistically, PAR induces R-DPR condensation and promotes R-DPR-induced stress granule formation and TDP-43 aggregation. Moreover, PAR associates with insoluble R-DPR and TDP-43 in postmortem tissue from patients. These findings identified PAR as a promoter of R-DPR toxicity and thus a potential target for treating c9ALS/FTD.


Frontotemporal Dementia , Arginine , C9orf72 Protein/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dipeptides/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Humans , Poly Adenosine Diphosphate Ribose
...