Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 16(10): e0010814, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36206314

RESUMEN

Echinococcosis is a parasitic disease caused by the metacestodes of Echinococcus spp. The disease has a long latent period and is largely underdiagnosed, partially because of the lack of effective early diagnostic approaches. Using liquid chromatography-mass spectrometry, we profiled the serum-derived extracellular vesicles (EVs) of E. multilocularis-infected mice and identified three parasite-origin proteins, thioredoxin peroxidase 1 (TPx-1), transitional endoplasmic reticulum ATPase (TER ATPase), and 14-3-3, being continuously released by the parasites into the sera during the infection via EVs. Using ELISA, both TPx-1 and TER ATPase were shown to have a good performance in diagnosis of experimental murine echinococcosis as early as 10 days post infection and of human echinococcosis compared with that of control. Moreover, TER ATPase and TPx-1 were further demonstrated to be suitable for evaluation of the prognosis of patients with treatment. The present study discovers the potential of TER ATPase and TPx-1 as promising diagnostic candidates for echinococcosis.


Asunto(s)
Equinococosis , Echinococcus multilocularis , Vesículas Extracelulares , Humanos , Ratones , Animales , Proteómica , Equinococosis/diagnóstico , Equinococosis/parasitología , Peroxirredoxinas , Adenosina Trifosfatasas
2.
Ying Yong Sheng Tai Xue Bao ; 33(6): 1505-1510, 2022 Jun.
Artículo en Chino | MEDLINE | ID: mdl-35729126

RESUMEN

Uncovering the variations of short-term water-use efficiency (WUEp) at whole-plant level in response to CO2 concentration (Ca) and soil water content (SWC) can improve the understanding of plant survival strategies under climate change. In this study, Platycladus orientalis saplings were cultured in simulated climate chambers.There were totally 15 treatments, including Ca of 400 (C400), 600 (C600) and 800 (C800) µmol·mol-1 and SWC of 35%-45% field water holding capacity (FC), 50%-60%FC, 60%-70%FC, 70%-80%FC and 95%-100%FC. The WUEp was measured by mini-lysimeters, weighting method, and static assimilation chamber. The results showed that both daytime (0.12-1.87 mol·h-1) and nighttime transpiration rates (0.01-0.16 mol·h-1) at whole-plant level reached the maximum at C400×70%-80%FC, while the whole-plant daytime net photosynthetic rate (2.12-22.10 mmol·h-1) reached the maximum at C800×70%-80%FC. In contrast, nighttime respiration rate (0.84-4.41 mmol·h-1) increased with increasing SWC, but decreased with increasing of Ca, reaching the maximum at C400×95%-100%FC. For WUEp (5.37-24.35 mmol·mol-1), it reached the maximum at C800×50%-60%FC, indicating that plants could use less water and fixed more carbon by adjusting adaptation strategies under high Ca and drought conditions. In addition, leaf instantaneous water-use efficiency was a good predictor of WUEP when the canopy structure was similar.


Asunto(s)
Suelo , Agua , Dióxido de Carbono/análisis , Sequías , Fotosíntesis/fisiología , Hojas de la Planta/química , Suelo/química , Agua/análisis
3.
Sci Total Environ ; 838(Pt 2): 155952, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35588814

RESUMEN

The hydrology and sediment processes in large rivers play important roles in maintaining aquatic and coastal ecosystems and advancing civilization and production in human systems. Therefore, quantitatively analyzing the spatiotemporal variability and dynamics of water and sediment discharge in large rivers is essential for improving watershed management and sustainable development in the areas surrounding rivers, especially the Yellow River, which is one of the most sediment-laden rivers in the world. In this study, we analyzed the evolution patterns and spatial sources of water and sediment discharge in the Yellow River from 1951 to 2020 and determined the impacts of different factors on water and sediment discharge variations. The results showed that the annual water and sediment discharge significantly decreased (p < 0.05) over the past 70 years, with an abrupt change occurring in 1986. The first dominant periodicity of water discharge was approximately 29 years, while the first dominant periodicity of sediment discharge was approximately 28 years. In terms of the water and sediment discharge sources, the dominant factor affecting variations in water discharge was water diversion from 1951 to 2020, while the dominant factor affecting variations in sediment discharge was sediment aggradation from 1951 to 1985 and changed to tributary inflow sediment from 1986 to 2020. In addition, the water and sediment discharge changes were also affected by anthropogenic activities, such as water and sediment diversions, dams and reservoirs, and water and soil conservation measures. In particular, the water and sediment interception capabilities of the established soil and water conservation measures gradually became saturated over time. Specifically, the maximum water and sediment interception capabilities of the current soil and water conservation measures were 12.2 billion m3 and 1.9 Gt, respectively. Overall, the results of the present study can help tailor water and sediment regulation countermeasures in the future.


Asunto(s)
Ríos , Movimientos del Agua , China , Ecosistema , Monitoreo del Ambiente/métodos , Sedimentos Geológicos , Humanos , Suelo , Agua
4.
Ying Yong Sheng Tai Xue Bao ; 32(6): 1971-1979, 2021 Jun.
Artículo en Chino | MEDLINE | ID: mdl-34212601

RESUMEN

To fully understand the changes in the evapotranspiration components in forest ecosystem and their contribution to evapotranspiration at daily scale, we used the hypothesis theory of isotopic steady state and non-steady state combined with the water isotope analyzer system to quantitatively split and compare the evapotranspiration components of Platycladus orientalis ecosystem during the growing season. Results showed that the 18O of water from different sources during the four mea-surement days (August 5, 8, 10, 11, 2016) all showed surface soil water and oxygen isotope composition (δS) > branch water and oxygen isotope composition (δX) > atmospheric water vapor oxygen isotopes composition (δV), with obvious differences due to the isotope fractionation. Oxygen isotopes composition of soil evaporated water vapor (δE) was between -26.89‰ï½ž-59.68‰ at the daily scale, showing a pattern of first rising and then decreasing. The oxygen isotopic composition of evapotranspiration water vapor in forest ecosystem (δET) was between -15.99‰ï½ž-10.04‰. The oxygen isotopic composition of transpired water vapor under steady state(δT-ISS) was between -12.10‰ï½ž-9.51‰. The oxygen isotopic composition of transpired water vapor under non-steady state (δT-NSS) was between -13.02‰ï½ž-7.23‰. δET and δT-NSS had the same changing trend throughout the day at the daily scale, while the trend of δET, δT-ISS and δT-NSS was approximately the same during 11:00-17:00. In general, the contribution rate of plant transpiration to total evapotranspiration showed that FT-ISS was between 79.1%-98.7%, and FT-NSS was between 88.7%-93.7%. Our results suggested that water consumption through soil evaporation was far less than that of vegetation transpiration in the study area, and that vegetation transpiration dominated forest evapotranspiration.


Asunto(s)
Ecosistema , Transpiración de Plantas , Isótopos de Oxígeno , Vapor , Agua
5.
FEMS Microbiol Ecol ; 97(4)2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33705527

RESUMEN

The gut microbiota plays an important role in human health. In modern life, with the improvement of living conditions, the intake of high-sugar and high-fat diets as well as the large-scale use of antibacterial drugs have an extensive impact on the gut microbiota, even leading to gut microbiota-orchestrating disorders. This review discusses the effects of various factors, including geographic location, age, diet, antibacterial drugs, psychological situation and exercise on gut bacteria, which helps us profoundly to understand the significance of gut bacteria to human health and to find effective solutions to prevent or treat related diseases.


Asunto(s)
Microbioma Gastrointestinal , Bacterias , Dieta Alta en Grasa , Humanos
6.
Front Immunol ; 12: 602717, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33708201

RESUMEN

Echinococcosis, mainly caused by Echinococcus granulosus, is one of the 17 neglected tropical diseases. Extracellular vesicles (EVs) play an essential role in the host-parasite interplay. However, the EVs in the hydatid fluid (HF) of E. granulosus are not fully characterized. Herein, three different types of HF EVs, designated as 2 K, 10 K, and 110 K EVs based on the centrifugal force used, were morphologically identified. A total of 97, 80, and 581 proteins were identified in 2 K, 10 K, and 110 K EVs, respectively, 39 of which were commonly shared. Moreover, 11, 8, and 25 miRNAs were detected, respectively, and all of the 7 selected miRNAs were validated by qPCR to be significantly lower abundant than that in protoscoleces. It was further deemed that 110 K EVs were internalized by sheep peripheral blood mononuclear cells (PBMCs) in a time-dependent manner and thus induced interleukin (IL)-10, tumor necrosis factor-α (TNF-α), and IRF5 were significantly upregulated and IL-1ß, IL-17, and CD14 were significantly downregulated (p < 0.05). These data demonstrate the physical discrepancy of three HF EVs and an immunomodulatory effect of 110 K EVs on sheep PMBCs, suggesting a role in immune responses during E. granulosus infection.


Asunto(s)
Equinococosis/inmunología , Echinococcus granulosus/inmunología , Vesículas Extracelulares/inmunología , Inmunomodulación , Leucocitos Mononucleares/inmunología , Ovinos , Animales , Citocinas/inmunología , Equinococosis/parasitología , Proteínas del Helminto/inmunología , Ovinos/inmunología , Ovinos/parasitología
7.
RNA Biol ; 18(5): 809-817, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33499700

RESUMEN

Oncogenic viruses are associated with approximately 15% of human cancers. In viral infections, microRNAs play an important role in host-pathogen interactions. miR-21 is a highly conserved non-coding RNA that not only regulates the development of oncogenic viral diseases, but also responds to the regulation of intracellular signal pathways. Oncogenic viruses, including HBV, HCV, HPV, and EBV, co-evolve with their hosts and cause persistent infections. The upregulation of host miR-21 manipulates key cellular pathways to evade host immune responses and then promote viral replication. Thus, a better understanding of the role of miR-21 in viral infections may help us to develop effective genetically-engineered oncolytic virus-based therapies against cancer.


Asunto(s)
Interacciones Huésped-Patógeno/genética , MicroARNs/fisiología , Virus Oncogénicos/patogenicidad , Infecciones Tumorales por Virus/genética , Animales , Humanos , Neoplasias/genética , Neoplasias/patología , Neoplasias/virología , Virus Oncogénicos/genética , Virus Oncogénicos/inmunología , Infecciones Tumorales por Virus/inmunología , Infecciones Tumorales por Virus/patología , Infecciones Tumorales por Virus/virología , Replicación Viral/genética
8.
Sci Total Environ ; 739: 139885, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32534311

RESUMEN

This paper investigated the feasibility of using agricultural wastes and synthetic macromolecules as solid carbon sources and studied the effects of improvement of denitrification by the selected agricultural wastes. The carbon release capacity and denitrification performance of corncob (CC), peanut shell (PS), obsolescent rice (OR) and polycaprolactone (PCL), poly butylene succinate (PBS), polyvinyl alcohol sodium alginate (PVA-SA) were systematically analyzed. The results showed that for each carbon source, the first-order kinetic equation was basically followed during the carbon release process. PVA-SA, CC and PS had higher carbon release capacity with accumulative dissolved organic carbon (DOC) of 16.22-20.63 mg·g-1 and chemical oxygen demand (COD) of 100.86-134.10 mg·g-1. Correspondingly, they showed excellent denitrification performance with almost no residual NO3--N, and the denitrification process well followed the Monod equation. PCL, PBS and OR had lower carbon release capacity with accumulative DOC of 2.06-3.14 mg·g-1 and COD of 13.29-24.13 mg·g-1, respectively. Nevertheless, these materials can also improve the denitrification performance, with the residual NO3--N in the range of 6.02-6.36 mg·L-1, and the effluent DOC was in the range of 10-15 mg·L-1. Synthetic polymers are more suitable for nitrogen removal in groundwater treatment, while agricultural wastes are ideal carbon sources for secondary effluent treatment.

9.
Ying Yong Sheng Tai Xue Bao ; 31(6): 1800-1806, 2020 Jun.
Artículo en Chino | MEDLINE | ID: mdl-34494730

RESUMEN

Analysis of plant photosynthesis and post-photosynthetic fractionation can improve our understanding of plant physiology and water management. By measuring δ13C in the atmosphere, and δ13C of soluble compounds in leaves and branch phloem of Platycladus orientalis, we examined discrimination pattern, including atmosphere-leaf discrimination during photosynthesis (ΔCa-leaf) and leaf-twig discrimination during post-photosynthesis (ΔCleaf-phlo), in response to changes of soil water content (SWC) and atmospheric CO2 concentration (Ca). The results showed that ΔCa-leaf reached a maximum of 13.06‰ at 95%-100% field water-holding capacity (FC) and Ca 400 µmol·mol-1, and a minimum of 8.63‰ at 35%-45% FC and Ca 800 µmol·mol-1. Both stomatal conductance and mesophyll cell conductance showed a significant linear positive correlation with ΔCa-leaf, with a correlation coefficient of 0.43 and 0.44, respectively. ΔCleaf-phlo was not affected by SWC and Ca. Our results provide mechanism of carbon isotopes fractionation and a theoretical basis for plant survival strategies in response to future climate change.


Asunto(s)
Dióxido de Carbono , Suelo , Isótopos de Carbono , Deshidratación , Fotosíntesis , Hojas de la Planta
10.
Comp Immunol Microbiol Infect Dis ; 67: 101363, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31600681

RESUMEN

Exosomes, secreted by various cells, are nanometer-scale vesicles with the functions in intercellular communication. To understand a role of exosomal miRNAs in the sheeppox virus infection, exosomes were isolated from sheeppox virus-infected sheep testicular cells 0 h, 24 h and 72 h post infection. The results of transmission electron microscopy and size distribution showed that all three exosome samples were spherical particles with negatively-stained membrane, ranging from 39 nm to 127 nm in diameter. A total of 106 known and 279 novel miRNAs were identified, and 78 known and 54 novel miRNAs were commonly detected in three exosome samples. Compared with the exosomes by the uninfected controls, a total of 34 known miRNAs were aberrantly expressed in the exosomes from infected cells. In agreement with the sequencing data, the expression of oar-miR-21 and oar-miR-10b was shown to be the highest in exosomes at 24 h after SPPV-infected, and the expression of oar-let-7f was the highest in exosomes at 72 h. Conversely, the expression of oar-let-7b and oar-miR-221 was significantly decreased 24 h and 72 h post infection compared with 0 h. The analysis results also revealed that differentially expressed miRNAs were mostly involved in an immune system process and stimulus response. These results provide rich data to further investigate a role of exosomal miRNAs in SPPV-host interactions.


Asunto(s)
Exosomas/genética , MicroARNs/genética , MicroARNs/aislamiento & purificación , Infecciones por Poxviridae/veterinaria , Animales , Capripoxvirus/genética , Masculino , Ovinos , Enfermedades de las Ovejas/virología , Testículo/citología , Testículo/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...