Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Waste Manag ; 181: 89-100, 2024 May 30.
Article En | MEDLINE | ID: mdl-38598883

High-salt content in food waste (FW) affects its resource utilization during biotransformation. In this study, adaptive laboratory evolution (ALE), gene editing, and artificial consortia were performed out to improve the salt-tolerance of Bacillus amyloliquefaciens for producing lipopeptide under FW and seawater. High-salt stress significantly decreased lipopeptide production in the B. amyloliquefaciens HM618 and ALE strains. The total lipopeptide production in the recombinant B. amyloliquefaciens HM-4KSMSO after overexpressing the ion transportor gene ktrA and proline transporter gene opuE and replacing the promoter of gene mrp was 1.34 times higher than that in the strain HM618 in medium containing 30 g/L NaCl. Lipopeptide production under salt-tolerant consortia containing two strains (HM-4KSMSO and Corynebacterium glutamicum) and three-strains (HM-4KSMSO, salt-tolerant C. glutamicum, and Yarrowia lipolytica) was 1.81- and 2.28-fold higher than that under pure culture in a medium containing FW or both FW and seawater, respectively. These findings provide a new strategy for using high-salt FW and seawater to produce value-added chemicals.


Bacillus amyloliquefaciens , Lipopeptides , Bacillus amyloliquefaciens/metabolism , Bacillus amyloliquefaciens/genetics , Lipopeptides/metabolism , Salt Tolerance , Seawater/microbiology , Food , Food Loss and Waste
2.
Front Microbiol ; 10: 991, 2019.
Article En | MEDLINE | ID: mdl-31134029

Hydrocarbon-degrading and plant-growth-promoting bacterial endophytes have proven useful for facilitating the phytoremediation of petroleum-contaminated soils with high salinity. In this study, we identified Bacillus safensis strain ZY16 as an endophytic bacterium that can degrade hydrocarbons, produce biosurfactants, tolerate salt, and promote plant growth. The strain was isolated from the root of Chloris virgata Sw., a halotolerant plant collected from the Yellow River Delta. ZY16 survived in Luria-Bertani (LB) broth with 0-16% (w/v) sodium chloride (NaCl) and grew well in LB broth supplemented with 0-8% NaCl, indicating its high salt tolerance. The endophytic strain ZY16 effectively degraded C12-C32 n-alkanes of diesel oil effectively, as well as common polycyclic aromatic hydrocarbons under hypersaline conditions. For example, in mineral salts (MS) liquid medium supplemented with 6% NaCl, ZY16 degraded n-undecane, n-hexadecane, n-octacosane, naphthalene, phenanthrene, and pyrene, with degradation percentages of 94.5, 98.2, 64.8, 72.1, 59.4, and 27.6%, respectively. In addition, ZY16 produced biosurfactant, as confirmed by the oil spreading technique, surface tension detection, and emulsification of para-xylene and paraffin. The biosurfactant production ability of ZY16 under hypersaline conditions was also determined. Moreover, ZY16 showed plant-growth-promoting attributes, such as siderophore and indole-3-acetic acid production, as well as phosphate solubilization. To assess the enhanced phytoremediation of saline soils polluted by hydrocarbons and the plant-growth-promotion ability of ZY16, a pot trial with and without inoculation of the endophyte was designed and performed. Inoculated and non-inoculated plantlets of C. virgata Sw. were grown in oil-polluted saline soil, with oil and salt contents of 10462 mg/kg and 0.51%, respectively. After 120 days of growth, significant enhancement of both the aerial and underground biomass of ZY16-inoculated plants was observed. The soil total petroleum hydrocarbon degradation percentage (a metric of phytoremediation) after incubation with ZY16 was 63.2%, representing an elevation of 25.7% over phytoremediation without ZY16 inoculation. Our study should promote the application of endophytic B. safensis ZY16 in phytoremediation by extending our understanding of the mutualistic interactions between endophytes and their host plants.

3.
Plant Cell ; 30(10): 2286-2307, 2018 10.
Article En | MEDLINE | ID: mdl-30309900

Sorghum (Sorghum bicolor) is the fifth most popular crop worldwide and a C4 model plant. Domesticated sorghum comes in many forms, including sweet cultivars with juicy stems and grain sorghum with dry, pithy stems at maturity. The Dry locus, which controls the pithy/juicy stem trait, was discovered over a century ago. Here, we found that Dry gene encodes a plant-specific NAC transcription factor. Dry was either deleted or acquired loss-of-function mutations in sweet sorghum, resulting in cell collapse and altered secondary cell wall composition in the stem. Twenty-three Dry ancestral haplotypes, all with dry, pithy stems, were found among wild sorghum and wild sorghum relatives. Two of the haplotypes were detected in domesticated landraces, with four additional dry haplotypes with juicy stems detected in improved lines. These results imply that selection for Dry gene mutations was a major step leading to the origin of sweet sorghum. The Dry gene is conserved in major cereals; fine-tuning its regulatory network could provide a molecular tool to control crop stem texture.


Genetic Variation , Plant Proteins/genetics , Sorghum/genetics , Transcription Factors/genetics , Cell Wall/genetics , Cell Wall/metabolism , Edible Grain/genetics , Gene Expression Regulation, Plant , Genome, Plant , Genome-Wide Association Study , Haplotypes , Plant Proteins/metabolism , Plant Stems/physiology , Selection, Genetic , Sorghum/physiology
4.
Theor Appl Genet ; 128(9): 1685-701, 2015 Sep.
Article En | MEDLINE | ID: mdl-25982132

KEY MESSAGE: Eight morphological, biomass and biofuel traits were found with high broad-sense heritability and 18 significant QTLs discovered including one locus controlling the stem juice trait for sorghum grown in Denmark and China. Sweet sorghum with tall plant, fast maturation and high stem Brix content can be bred as a biofuel crop for Northern Europe. Sweet sorghum (Sorghum bicolour), a native tropical C4 crop, has attracted interest as a bioenergy crop in northern countries due to its juice-rich stem and high biomass production. Little is known about the traits important for its adaptation to high altitude climatic conditions and their genetic controls. Recombinant inbred lines derived from a cross between a sweet and a grain kaoliang sorghum were used in five field trials in Denmark and in China to identify the stability and genetic controls of morphological, biomass and biofuel traits during three consecutive summers with short duration, cool temperatures and long days. Eight out of 15 traits were found with high broad-sense heritability. Strong positive correlations between plant height and biomass traits were observed, while Brix and juice content were under different genetic controls. Using newly developed PAV (presence and absence variant) markers, 53 QTLs were detected, of which 18 were common for both countries, including a locus controlling stem juice (LOD score = 20.5, r (2) = 37.5 %). In Denmark, the heading stage correlated significantly with biomass and morphology traits, and two significant maturity QTLs detected on chromosomes SBI01 and SBI02 co-localised with QTLs previously associated with early-stage chilling tolerance, suggesting that accelerating maturation might be a means of coping with low-temperature stress. Our results suggest that selection for tall and fast maturating sorghum plants combined with high Brix content represents a high potential for breeding bioenergy crop for Northern Europe.


Biofuels , Biomass , Climate , Quantitative Trait Loci , Sorghum/genetics , China , Denmark , Genetic Markers , Genotype , Phenotype , Plant Breeding
5.
Chin Med J (Engl) ; 128(5): 574-80, 2015 Mar 05.
Article En | MEDLINE | ID: mdl-25698186

BACKGROUND: Mild hypoxic-ischemic encephalopathy (HIE) injury is becoming the major type in neonatal brain diseases. The aim of this study was to assess brain maturation in mild HIE neonatal brains using total maturation score (TMS) based on conventional magnetic resonance imaging (MRI). METHODS: Totally, 45 neonates with clinically mild HIE and 45 matched control neonates were enrolled. Gestated age, birth weight, age after birth and postmenstrual age at magnetic resonance (MR) scan were homogenous in the two groups. According to MR findings, mild HIE neonates were divided into three subgroups: Pattern I, neonates with normal MR appearance; Pattern II, preterm neonates with abnormal MR appearance; Pattern III, full-term neonates with abnormal MR appearance. TMS and its parameters, progressive myelination (M), cortical infolding (C), involution of germinal matrix tissue (G), and glial cell migration bands (B), were employed to assess brain maturation and compare difference between HIE and control groups. RESULTS: The mean of TMS was significantly lower in mild HIE group than it in the control group (mean ± standard deviation [SD] 11.62 ± 1.53 vs. 12.36 ± 1.26, P < 0.001). In four parameters of TMS scores, the M and C scores were significantly lower in mild HIE group. Of the three patterns of mild HIE, Pattern I (10 cases) showed no significant difference of TMS compared with control neonates, while Pattern II (22 cases), III (13 cases) all had significantly decreased TMS than control neonates (mean ± SD 10.56 ± 0.93 vs. 11.48 ± 0.55, P < 0.05; 12.59 ± 1.28 vs. 13.25 ± 1.29, P < 0.05). It was M, C, and GM scores that significantly decreased in Pattern II, while for Pattern III, only C score significantly decreased. CONCLUSIONS: The TMS system, based on conventional MRI, is an effective method to detect delayed brain maturation in clinically mild HIE. The conventional MRI can reveal the different retardations in subtle structures and development processes among the different patterns of mild HIE.


Brain/pathology , Hypoxia-Ischemia, Brain/diagnosis , Magnetic Resonance Imaging/methods , Female , Humans , Infant, Newborn , Male
...