Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Alzheimers Dement ; 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39129270

RESUMEN

INTRODUCTION: Frontotemporal dementia (FTD) can be phenotypically divided into behavioral variant FTD (bvFTD), nonfluent variant primary progressive aphasia (nfvPPA), and semantic variant PPA (svPPA). However, the neural underpinnings of this phenotypic heterogeneity remain elusive. METHODS: Cortical morphology, white matter hyperintensities (WMH), diffusion tensor image analysis along the perivascular space (DTI-ALPS), and their interrelationships were assessed in subtypes of FTD. Neuroimaging-transcriptional analyses on the regional cortical morphological deviances among subtypes were also performed. RESULTS: Changes in cortical thickness, surface area, gyrification, WMH, and DTI-ALPS were subtype-specific in FTD. The three morphologic indices are related to whole-brain WMH volume and cognitive performance, while cortical thickness is related to DTI-ALPS. Neuroimaging-transcriptional analyses identified key biological pathways linked to the formation and/or spread of TDP-43/tau pathologies. DISCUSSION: We found subtype-specific changes in cortical morphology, WMH, and glymphatic function in FTD. Our findings have the potential to contribute to the development of personalized predictions and treatment strategies for this disorder. HIGHLIGHTS: Cortical morphologic changes, white matter hyperintensities (WMH), and glymphatic dysfunction are subtype-specific. Cortical morphologic changes, WMH, and glymphatic dysfunction are inter-correlated. Cortical morphologic changes and WMH burden contribute to cognitive impairments.

2.
Macromol Rapid Commun ; : e2400307, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987897

RESUMEN

Most nonconventional luminogens enjoy good water solubility and biocompatibility, showing unique application prospects in fields like biological imaging. Although clustering-triggered emission (CTE) mechanisms have been proposed to explain such emissions, it has not been thoroughly elucidated, which limits their development and application. Herein, the photoluminescence properties of polyacrylamide prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization aqueous solution are utilized to further investigate the effects of changes in concentration, in order to elucidate the emission mechanism through transmission electron microscopy (TEM), small angle X-ray scattering (SAXS) and theoretical calculation. The results showed that the size distribution, morphology, and distance between the polymer clusters formed in the water solution are successfully correlated with the cluster emission centers. The emission mechanism of nonconventional luminogens solutions is more clearly and intuitively elucidated, which has a promoting effect on the emission and application of this field. It provides a strategy a strategy to clarify the CTE mechanism of nonconventional luminogens solution more clearly.

3.
bioRxiv ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39026781

RESUMEN

Background: In 2019, the Open Pediatric Brain Tumor Atlas (OpenPBTA) was created as a global, collaborative open-science initiative to genomically characterize 1,074 pediatric brain tumors and 22 patient-derived cell lines. Here, we extend the OpenPBTA to create the Open Pediatric Cancer (OpenPedCan) Project, a harmonized open-source multi-omic dataset from 6,112 pediatric cancer patients with 7,096 tumor events across more than 100 histologies. Combined with RNA-Seq from the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA), OpenPedCan contains nearly 48,000 total biospecimens (24,002 tumor and 23,893 normal specimens). Findings: We utilized Gabriella Miller Kids First (GMKF) workflows to harmonize WGS, WXS, RNA-seq, and Targeted Sequencing datasets to include somatic SNVs, InDels, CNVs, SVs, RNA expression, fusions, and splice variants. We integrated summarized CPTAC whole cell proteomics and phospho-proteomics data, miRNA-Seq data, and have developed a methylation array harmonization workflow to include m-values, beta-vales, and copy number calls. OpenPedCan contains reproducible, dockerized workflows in GitHub, CAVATICA, and Amazon Web Services (AWS) to deliver harmonized and processed data from over 60 scalable modules which can be leveraged both locally and on AWS. The processed data are released in a versioned manner and accessible through CAVATICA or AWS S3 download (from GitHub), and queryable through PedcBioPortal and the NCI's pediatric Molecular Targets Platform. Notably, we have expanded PBTA molecular subtyping to include methylation information to align with the WHO 2021 Central Nervous System Tumor classifications, allowing us to create research- grade integrated diagnoses for these tumors. Conclusions: OpenPedCan data and its reproducible analysis module framework are openly available and can be utilized and/or adapted by researchers to accelerate discovery, validation, and clinical translation.

4.
Macromol Rapid Commun ; 45(14): e2400073, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38594014

RESUMEN

Nonconventional luminescent polymers have become research hotspots due to their advantages such as persistent room temperature phosphorescence (p-RTP) emission and strong film-forming properties. It is proven that the molecular weight (MW) of such luminescent polymers has a significant impact on their emission over a large range, generally with a red shift as the MW increases. Herein, four controllable MW polyacrylamides are prepared via reversible addition-fragmentation chain transfer polymerization (RAFT), and their photoluminescence quantum yield and p-RTP lifetimes gradually increase with the increasing MW. The emission of p-RTP gradually shifts blue with increasing MW, which is likely due to the gradually changing interactions between the electron-rich portion in RAFT reagent and the increasing acrylamide (AM) units in the molecular chain. These can be reasonably explained through small angle X-ray scattering, the clustering-triggered emission (CTE) mechanism, and supported by theoretical calculations. Powder with controllable p-RTP capability has the potential for strategic anti-counterfeiting encryption. The above results not only promote the development of the CTE mechanism toward more precise explanations but also provide new ideas for the preparation of nonconventional luminescent polymers with controllable p-RTP emission performance.


Asunto(s)
Resinas Acrílicas , Peso Molecular , Color , Resinas Acrílicas/química , Polimerizacion , Estructura Molecular , Espectrometría Raman , Difracción de Rayos X
5.
Poult Sci ; 103(5): 103570, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38484565

RESUMEN

The present study investigated the effects of fermented bamboo powder (FPB) on gut odorant receptors (OR), intestinal health, and growth performance of dwarf yellow-feathered broiler chickens. Six hundred (600) healthy 1-day-old chicks were randomly assigned into 2 groups, with 10 replicates consisting of 30 chicks each. The control group was fed a basal diet. In contrast, the experimental group was fed the basal diet supplemented with 1.0, 2.0, 4.0, and 6.0 g/kg FBP for 4 different phases, namely phase I (1-22 d), phase II (23-45 d), phase III (46-60 d), and phase IV (61-77 d), respectively. The first 2 phases were considered pretreatment (0-45 d), and the remaining were experimental (46-77 d) periods. The tissue samples were collected from phase IV. The chickens in the FBP supplementation group exhibited a significant increment in body weight gain, evisceration yield, breast, thigh, and liver weight, while also experiencing a decrease in the FCR (P < 0.05). Furthermore, the villus height, crypt depth, and villus area exhibited significant increases in the FBP group (P < 0.01). Additionally, the secretion levels of gut hormones such as glucagon-like peptide-1, peptide YY, cholecystokinin, and 5-hydroxytryptamine were significantly elevated in the serum, duodenum, jejunum, and ileum tissues in the FBP group (P < 0.05). The results of qRT-PCR indicated that ORs had responsive expression in the gizzard, proventriculus, and small intestine of chickens when fed with the FBP diet (P < 0.05). Notably, the expression of the COR1, COR2, COR4, COR6, COR8, COR9, OR52R1, OR51M1, OR1F2P, OR5AP2, and OR14J1L112 genes was stronger in the small intestines compared to the gizzard and proventriculus. In conclusion, these results suggest that the FPB plays a crucial role in growth performance, activation of ORs, and gut health and development.


Asunto(s)
Alimentación Animal , Pollos , Dieta , Suplementos Dietéticos , Distribución Aleatoria , Receptores Odorantes , Animales , Pollos/crecimiento & desarrollo , Pollos/fisiología , Alimentación Animal/análisis , Dieta/veterinaria , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Suplementos Dietéticos/análisis , Intestinos/efectos de los fármacos , Sasa/química , Relación Dosis-Respuesta a Droga , Fermentación , Polvos/química , Bambusa/química , Masculino
6.
Angew Chem Int Ed Engl ; 63(15): e202400459, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38317310

RESUMEN

We realized the microenvironment-differential Imaging of demethylated metabolites of methionine and the regional regulation of ferroptosis.


Asunto(s)
Ferroptosis , Metionina , Fluorescencia , Racemetionina , Diagnóstico por Imagen , Microambiente Tumoral
7.
Artículo en Inglés | MEDLINE | ID: mdl-38083250

RESUMEN

Divergent clinical symptoms and pathological progression suggest multiple subtypes of Parkinson disease (PD). Here, we proposed a reliable PD subtyping approach that quantifies the disturbance of an individual patient to the reference structural covariance networks derived from healthy controls. We revealed two subtypes of de novo PD patients by using longitudinal data from the PPMI dataset. Compared to the conventional clinical TD/PIGD phenotypes, our subtyping was highly stable in 5 years' visits. The two subtypes of PD showed significant differences in motor symptoms, medication effects, CSF biomarkers, and longitudinal progression. Moreover, patients of subtype 2 showed widespread lower cortical-to-dorsal raphe nucleus (DRN) connections and higher medication effects on motor symptoms which was regulated by 5-HT neurons in DRN. Our results suggest distinct neuropathological pathways underlying the two subtypes, such that, in contrast to the typical PD subtype, patients of subtype 2 may be affected by serotonergic modulation on dopaminergic neurons in striatum. Our study opens new avenue to precision medicine and personalized treatments in PD and may be applicable to other neurodegenerative diseases.


Asunto(s)
Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/tratamiento farmacológico , Biomarcadores , Fenotipo , Neuronas Dopaminérgicas
8.
Psychol Med ; : 1-7, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37994452

RESUMEN

BACKGROUND: Obsessive-compulsive disorder (OCD) is thought to arise from dysconnectivity among interlinked brain regions resulting in a wide spectrum of clinical manifestations. Cortical gyrification, a key morphological feature of human cerebral cortex, has been considered associated with developmental connectivity in early life. Monitoring cortical gyrification alterations may provide new insights into the developmental pathogenesis of OCD. METHODS: Sixty-two medication-naive patients with OCD and 59 healthy controls (HCs) were included in this study. Local gyrification index (LGI) was extracted from T1-weighted MRI data to identify the gyrification changes in OCD. Total distortion (splay, bend, or twist of fibers) was calculated using diffusion-weighted MRI data to examine the changes in white matter microstructure in patients with OCD. RESULTS: Compared with HCs, patients with OCD showed significantly increased LGI in bilateral medial frontal gyrus and the right precuneus, where the mean LGI was positively correlated with anxiety score. Patients with OCD also showed significantly decreased total distortion in the body, genu, and splenium of the corpus callosum (CC), where the average distortion was negatively correlated with anxiety scores. Intriguingly, the mean LGI of the affected cortical regions was significantly correlated with the mean distortion of the affected white matter tracts in patients with OCD. CONCLUSIONS: We demonstrated associations among increased LGI, aberrant white matter geometry, and higher anxiety in patients with OCD. Our findings indicate that developmental dysconnectivity-driven alterations in cortical folding are one of the neural substrates underlying the clinical manifestations of OCD.

9.
Sci Transl Med ; 15(708): eabq1533, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37556555

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral proteins bind to host mitochondrial proteins, likely inhibiting oxidative phosphorylation (OXPHOS) and stimulating glycolysis. We analyzed mitochondrial gene expression in nasopharyngeal and autopsy tissues from patients with coronavirus disease 2019 (COVID-19). In nasopharyngeal samples with declining viral titers, the virus blocked the transcription of a subset of nuclear DNA (nDNA)-encoded mitochondrial OXPHOS genes, induced the expression of microRNA 2392, activated HIF-1α to induce glycolysis, and activated host immune defenses including the integrated stress response. In autopsy tissues from patients with COVID-19, SARS-CoV-2 was no longer present, and mitochondrial gene transcription had recovered in the lungs. However, nDNA mitochondrial gene expression remained suppressed in autopsy tissue from the heart and, to a lesser extent, kidney, and liver, whereas mitochondrial DNA transcription was induced and host-immune defense pathways were activated. During early SARS-CoV-2 infection of hamsters with peak lung viral load, mitochondrial gene expression in the lung was minimally perturbed but was down-regulated in the cerebellum and up-regulated in the striatum even though no SARS-CoV-2 was detected in the brain. During the mid-phase SARS-CoV-2 infection of mice, mitochondrial gene expression was starting to recover in mouse lungs. These data suggest that when the viral titer first peaks, there is a systemic host response followed by viral suppression of mitochondrial gene transcription and induction of glycolysis leading to the deployment of antiviral immune defenses. Even when the virus was cleared and lung mitochondrial function had recovered, mitochondrial function in the heart, kidney, liver, and lymph nodes remained impaired, potentially leading to severe COVID-19 pathology.


Asunto(s)
COVID-19 , Cricetinae , Humanos , Animales , Ratones , COVID-19/patología , SARS-CoV-2 , Roedores , Genes Mitocondriales , Pulmón/patología
10.
Neurosci Lett ; 812: 137401, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37460055

RESUMEN

Neuroimaging studies have identified significant differences in brain structure, function, and connectivity between endurance runners and healthy controls. However, the topological organization of large-scale functional brain networks remains unexplored in endurance runners. Using resting-state functional magnetic resonance imaging data, this study examined the differences in the topological organization of functional networks between endurance runners (n = 22) and healthy controls (n = 20). Endurance runners had significantly higher clustering coefficients in the whole-brain functional network than healthy controls, but the two did not differ regarding the shortest path length or small-world index. Using network-based statistics, we identified one subnetwork in endurance runners with higher functional connectivity than healthy controls, and the mean functional connectivity of the subnetwork significantly correlated with the three aforementioned small-world parameters. In this subnetwork, the mean clustering coefficient of nodes associated with short-range connections was higher in endurance runners than in healthy controls, but the mean clustering coefficient of nodes associated with long-range connections did not differ between the two groups. In conclusion, using graph theoretical approaches, we revealed significant differences in the topological organization of the whole-brain functional network and functional connectivity between endurance runners and healthy controls. The relationship between these two features suggests that a more segregated network may arise from the optimization of the identified subnetwork in endurance runners. These findings are possibly the neural basis underlying the good performance of endurance runners in endurance running.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos , Neuroimagen
11.
Front Aging Neurosci ; 15: 1202699, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37434739

RESUMEN

Introduction: Studies have found a varying degree of cognitive, psychosocial, and functional impairments in patients with unruptured intracranial aneurysms (UIAs), whereas the neural correlates underlying these impairments remain unknown. Methods: To examine the brain morphological alterations and white matter lesions in patients with UIA, we performed a range of structural analyses to examine the brain morphological alterations in patients with UIA compared with healthy controls (HCs). Twenty-one patients with UIA and 23 HCs were prospectively enrolled into this study. Study assessment consisted of a brain magnetic resonance imaging (MRI) scan with high-resolution T1-weighted and T2-weighted imaging data, a Montreal Cognitive Assessment (MoCA), and laboratory tests including blood inflammatory markers and serum lipids. Brain MRI data were processed for cortical thickness, local gyrification index (LGI), volume and shape of subcortical nuclei, and white matter lesions. Results: Compared to the HCs, patients with UIA showed no significant differences in cortical thickness but decreased LGI values in the right posterior cingulate cortex, retrosplenial cortex, cuneus, and lingual gyrus. In addition, decreased LGI values correlated with decreased MoCA score (r = 0.498, p = 0.021) and increased white matter lesion scores (r = -0.497, p = 0.022). The LGI values were correlated with laboratory values such as inflammatory markers and serum lipids. Patients with UIA also showed significant regional atrophy in bilateral thalami as compared to the HCs. Moreover, the LGI values were significantly correlated with thalamic volume in the HCs (r = 0.4728, p = 0.0227) but not in the patients with UIA (r = 0.11, p = 0.6350). Discussion: The decreased cortical gyrification, increased white matter lesions, and regional thalamic atrophy in patients with UIA might be potential neural correlates of cognitive changes in UIA.

12.
Neurology ; 101(3): e311-e323, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37268433

RESUMEN

BACKGROUND AND OBJECTIVES: Pathologic progression across the cortex is a key feature of Parkinson disease (PD). Cortical gyrification is a morphologic feature of human cerebral cortex that is tightly linked to the integrity of underlying axonal connectivity. Monitoring cortical gyrification reductions may provide a sensitive marker of progression through structural connectivity, preceding the progressive stages of PD pathology. We aimed to examine the progressive cortical gyrification reductions and their associations with overlying cortical thickness, white matter (WM) integrity, striatum dopamine availability, serum neurofilament light (NfL) chain, and CSF α-synuclein levels in PD. METHODS: This study included a longitudinal dataset with baseline (T0), 1-year (T1), and 4-year (T4) follow-ups and 2 cross-sectional datasets. Local gyrification index (LGI) was computed from T1-weighted MRI data to measure cortical gyrification. Fractional anisotropy (FA) was computed from diffusion-weighted MRI data to measure WM integrity. Striatal binding ratio (SBR) was measured from 123Ioflupane SPECT scans. Serum NfL and CSF α-synuclein levels were also measured. RESULTS: The longitudinal dataset included 113 patients with de novo PD and 55 healthy controls (HCs). The cross-sectional datasets included 116 patients with relatively more advanced PD and 85 HCs. Compared with HCs, patients with de novo PD showed accelerated LGI and FA reductions over 1-year period and a further decline at 4-year follow-up. Across the 3 time points, the LGI paralleled and correlated with FA (p = 0.002 at T0, p = 0.0214 at T1, and p = 0.0037 at T4) and SBR (p = 0.0095 at T0, p = 0.0035 at T1, and p = 0.0096 at T4) but not with overlying cortical thickness in patients with PD. Both LGI and FA correlated with serum NfL level (LGI: p < 0.0001 at T0, p = 0.0043 at T1; FA: p < 0.0001 at T0, p = 0.0001 at T1) but not with CSF α-synuclein level in patients with PD. In the 2 cross-sectional datasets, we revealed similar patterns of LGI and FA reductions and associations between LGI and FA in patients with more advanced PD. DISCUSSION: We demonstrated progressive reductions in cortical gyrification that were robustly associated with WM microstructure, striatum dopamine availability, and serum NfL level in PD. Our findings may contribute biomarkers for PD progression and potential pathways for early interventions of PD.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , Imagen por Resonancia Magnética , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Estudios Transversales , Dopamina , Corteza Cerebral/patología , Biomarcadores
13.
Aging Cell ; 22(7): e13865, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37183600

RESUMEN

Mitochondrial dysfunction is considered to be an important mediator of the pro-aging process in chronic kidney disease, which is continuously increasing worldwide. Although PTEN-induced kinase 1 (PINK1) regulates mitochondrial function, its role in renal aging remains unclear. We investigated the association between PINK1 and renal aging, especially through the cGAS-STING pathway, which is known to result in an inflammatory phenotype. Pink1 knockout (Pink1-/- ) C57BL/6 mice and senescence-induced renal tubular epithelial cells (HKC-8) treated with H2 O2 were used as the renal aging models. Extensive analyses at transcriptomic-metabolic levels have explored changes in mitochondrial function in PINK1 deficiency. To investigate whether PINK1 deficiency affects renal aging through the cGAS-STING pathway, we explored their expression levels in PINK1 knockout mice and senescence-induced HKC-8 cells. PINK1 deficiency enhances kidney fibrosis and tubular injury, and increases senescence and the senescence-associated secretory phenotype (SASP). These phenomena were most apparent in the 24-month-old Pink1-/- mice and HKC-8 cells treated with PINK1 siRNA and H2 O2 . Gene expression analysis using RNA sequencing showed that PINK1 deficiency is associated with increased inflammatory responses, and transcriptomic and metabolomic analyses suggested that PINK1 deficiency is related to mitochondrial metabolic dysregulation. Activation of cGAS-STING was prominent in the 24-month-old Pink1-/- mice. The expression of SASPs was most noticeable in senescence-induced HKC-8 cells and was attenuated by the STING inhibitor, H151. PINK1 is associated with renal aging, and mitochondrial dysregulation by PINK1 deficiency might stimulate the cGAS-STING pathway, eventually leading to senescence-related inflammatory responses.


Asunto(s)
Envejecimiento , Riñón , Animales , Ratones , Envejecimiento/genética , Riñón/metabolismo , Ratones Endogámicos C57BL , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo
14.
Behav Brain Res ; 447: 114414, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37001820

RESUMEN

Postpartum depression (PPD) is the most common postpartum psychiatric disorder, which can negatively affect both mothers and their offspring. Although the functional changes of PPD have been extensively studied, little is known about its structural abnormalities. This study aimed to examine the cortical and subcortical morphological abnormalities in PPD. High resolution T1 structural MRI data of 29 PPD women and 23 matched healthy postpartum women (HPW) were included in this study. Using surface-based morphometry, we examined the differences between the PPD and HPW group in the cortical thickness, local gyrification index and shape changes of deep gray matter nuclei. Compared with the HPW group, women with PPD showed significantly increased cortical thickness in the left superior frontal gyrus, cuneus and right lingual gyrus and fusiform gyrus, which correlated marginally with the EPDS scores of these subjects. In addition, women with PPD showed significant regional inflation in the right pallidum compared with the HPW group. These findings provided further evidence for the structural brain abnormalities in PPD.


Asunto(s)
Depresión Posparto , Humanos , Femenino , Depresión Posparto/diagnóstico por imagen , Imagen por Resonancia Magnética , Lóbulo Temporal , Lóbulo Occipital , Corteza Prefrontal
15.
Cereb Cortex ; 33(5): 2174-2182, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-35567796

RESUMEN

Gray matter volume and thickness reductions have been reported in patients with spinocerebellar ataxia type 3 (SCA3), whereas cortical gyrification alterations of this disease remain largely unexplored. Using local gyrification index (LGI) and fractional anisotropy (FA) from structural and diffusion MRI data, this study investigated the cortical gyrification alterations as well as their relationship with white matter microstructural abnormalities in patients with SCA3 (n = 61) compared with healthy controls (n = 69). We found widespread reductions in cortical LGI and white matter FA in patients with SCA3 and that changes in these 2 features were also coupled. In the patient group, the LGI of the left middle frontal gyrus, bilateral insula, and superior temporal gyrus was negatively correlated with the severity of depressive symptoms, and the FA of a cluster in the left cerebellum was negatively correlated with the Scale for the Assessment and Rating of Ataxia scores. Our findings suggest that the gyrification abnormalities observed in this study may account for the clinical heterogeneity in SCA3 and are likely to be mediated by the underlying white matter microstructural abnormalities of this disease.


Asunto(s)
Enfermedad de Machado-Joseph , Sustancia Blanca , Humanos , Imagen por Resonancia Magnética , Imagen de Difusión por Resonancia Magnética , Cerebelo , Sustancia Gris
16.
NPJ Parkinsons Dis ; 8(1): 167, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36470900

RESUMEN

Parkinson's disease (PD) can be classified into an akinetic-rigid (AR) and a tremor-dominant (TD) subtype based on predominant motor symptoms. Patients with different motor subtypes often show divergent clinical manifestations; however, the underlying neural mechanisms remain unclear. This study aimed to characterize the cortical and subcortical morphological alterations in motor subtypes of PD. T1-weighted MRI images were obtained for 90 patients with PD (64 with the AR subtype and 26 with the TD subtype) and 56 healthy controls (HCs). Cortical surface area, sulcal depth (measured by Freesurfer's Sulc index), and subcortical volume were computed to identify the cortical and subcortical morphological alterations in the two motor subtypes. Compared with HCs, we found widespread surface area reductions in the AR subtype yet sparse surface area reductions in the TD subtype. We found no significant Sulc change in the AR subtype yet increased Sulc in the right supramarginal gyrus in the TD subtype. The hippocampal volumes in both subtypes were lower than those of HCs. In PD patients, the surface area of left posterior cingulate cortex was positively correlated with Mini-Mental State Examination (MMSE) score, while the Sulc value of right middle frontal gyrus was positively correlated with severity of motor impairments. Additionally, the hippocampal volumes were positively correlated with MMSE and Montreal Cognitive Assessment scores and negatively correlated with severity of motor impairments and Hoehn & Yahr scores. Taken together, these findings may contribute to a better understanding of the neural substrates underlying the distinct symptom profiles in the two PD subtypes.

17.
Front Oncol ; 12: 952983, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172168

RESUMEN

Neuroimaging studies have found significant structural alterations of the cerebral cortex in patients with nasopharyngeal carcinoma (NPC) following radiotherapy (RT) or concomitant chemoradiotherapy (CCRT), while their effects on the shape of subcortical structures remain largely unknown. In this study, we investigated the subcortical shape alterations between three groups: 56 untreated NPC patients (pre-RT group), 37 RT-treated NPC patients (post-RT group), and 108 CCRT-treated NPC patients (post-CCRT group). Using FSL-FIRST, we found that, compared with the pre-RT group, the post-CCRT group exhibited significant inward atrophy in the bilateral thalamus, bilateral putamen, left pallidum, and left caudate and outward inflation in the left caudate, while the post-RT group only exhibited inward atrophy in the bilateral thalamus. In addition, greater maximum dosage of RT for temporal lobes was associated with more severe inward atrophy of the bilateral thalamus in treated NPC patients. These results indicated that there may be an interaction between RT and CT that can cause subcortical damage.

18.
Front Chem ; 10: 805252, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35836680

RESUMEN

The alkali mercerizing process of semicrystalline cotton fiber (CF) is widely used in the printing and dyeing industry. The crystallinity change in the mercerizing process has been studied and certain laws have been obtained, but there is still a certain distance between the theoretical research results and the practical applications. CF is almost composed of cellulose, combined with the photoluminescence (PL) phenomenon of cellulose; herein, the varying crystallinity is correlated with its PL behavior after being treated with different concentrations of NaOH. In line with the characteristics of nonconventional luminogens, CF enjoys excitation-dependent emission and persistent room temperature phosphorescence (p-RTP) behavior. The emission spectra of all samples under the same excitation wavelength indicate that the change of CF crystallinity has a significant impact on its fluorescence and p-RTP emission. As the concentration of NaOH increases, the varying trend of quantum efficiency (QY) is consistent with the changed crystallinity of CF. Interestingly, the lifetime of p-RTP is exactly the opposite of the crystallinity change law. Clustering-triggered emission (CTE), crystallization-Induced Phosphorescence (CIP) mechanism, and the swelling due to hydrated sodium ions can reasonably explain these interesting photophysical processes, which also can be supported by theoretical calculations. The above studies have basically clarified the inherent law between the crystalline change of CF and the PL emission behavior during the alkali treatment process, which can be used as a theoretical reference for real-time monitoring of CF crystallinity changes using the spectral method in the actual cotton mercerizing process.

19.
Neuroimage Clin ; 35: 103122, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35872436

RESUMEN

Intracortical myelin is involved in speeding and synchronizing neural activity of the cerebral cortex and has been found to be disrupted in various psychiatric disorders. However, its role in obsessive-compulsive disorder (OCD) has remained unknown. In this study, we investigated the alterations in intracortical myelin and their association with white matter (WM) microstructural abnormalities in OCD. T1-weighted and diffusion-weighted brain images were obtained for 51 medication-naïve patients with OCD and 26 healthy controls (HCs). The grey/white matter contrast (GWC) was calculated from T1-weighted signal intensities to characterize the intracortical myelin profile in OCD. Diffusion parameters, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD), were extracted from diffusion-weighted images to examine the WM microstructure in OCD. Compared with HCs, patients with OCD showed increased GWC in the bilateral orbitofrontal, cuneus, lingual and fusiform gyrus, left anterior cingulate, left superior parietal, right inferior parietal, and right middle frontal cortices, suggesting reduced intracortical myelin. Patients with OCD also showed decreased FA in several WM regions, with a topology corresponding to the GWC alterations. In both groups, the mean GWC of the significant clusters in between-group GWC analysis was correlated negatively with the mean FA of the significant clusters in between-group FA analysis. In patients with OCD, the FA of a cluster in the right cerebellum correlated negatively with the Yale-Brown obsessive-compulsive scale scores. Our results suggest that abnormal intracortical and WM myelination could be the microstructural basis for the brain connectivity alterations and disrupted inhibitory control in OCD.


Asunto(s)
Leucoaraiosis , Trastorno Obsesivo Compulsivo , Sustancia Blanca , Encéfalo , Corteza Cerebral/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Humanos , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen
20.
bioRxiv ; 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35233572

RESUMEN

Defects in mitochondrial oxidative phosphorylation (OXPHOS) have been reported in COVID-19 patients, but the timing and organs affected vary among reports. Here, we reveal the dynamics of COVID-19 through transcription profiles in nasopharyngeal and autopsy samples from patients and infected rodent models. While mitochondrial bioenergetics is repressed in the viral nasopharyngeal portal of entry, it is up regulated in autopsy lung tissues from deceased patients. In most disease stages and organs, discrete OXPHOS functions are blocked by the virus, and this is countered by the host broadly up regulating unblocked OXPHOS functions. No such rebound is seen in autopsy heart, results in severe repression of genes across all OXPHOS modules. Hence, targeted enhancement of mitochondrial gene expression may mitigate the pathogenesis of COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA