Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Langmuir ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140175

RESUMEN

A light-sensitive moiety, e.g., azobenzene, for the light-sensitive liposomal drug carrier has shown advantages as an advanced drug delivery system in site-specific smart therapy due to its reversible photoisomerization characteristics. In this work, a series of 4-position-cholesterol-functionalized azobenzene derivatives with 4'-position substituted pyridine, quinoline, isoquinoline, triethylamine, or ethylenediamine were synthesized, and the relationship between the molecular structure and drug release behaviors was clarified. We found that the charge and electrophilicity of substituents were two important factors (expressed as the characteristic time) that can precisely regulate the isomerization ratio in the liposomal system. There was an approximately linear correlation between the characteristic time of photoisomerization and the fitted first-order constant of photoinduced drug release rate. The photoinduced drug release could be achieved at the desired time and in an appropriate amount by tailoring the substituents at the 4'-position of azobenzene-cholesterol derivatives.

2.
Chem Sci ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39170721

RESUMEN

Sintering of metal nanocatalysts leading to particle growth and subsequent performance deactivation is a primary issue that hinders their practical applications. While metal-support interaction (MSI) is considered as the critical factor which influences the sintering behavior, the underlying microscopic mechanism and kinetics remain incompletely understood. Here, by using in situ scanning transmission electron microscopy (STEM) and theoretical analysis, we reveal the selection rule of the sintering mechanism for Pt nanoparticles on a two-dimensional (2D) MXene (Ti3C2T x ) support, which relies on the surface topology of MXene flakes. It is demonstrated that the sintering of Pt nanoparticles proceeds via Ostwald ripening (OR) in the surface defect (such as steps and pore edges) regions of MXene flakes due to strong MSI on the Pt/MXene interface; conversely, weak MSI between Pt nanoparticles and the planar surface of MXene leads to prevalent particle migration and coalescence (PMC) for sintering. Furthermore, our quantitative analysis shows a significant divergence in sintering rates for PMC and OR processes. These microscopic observations suggest a clear "sintering mechanism-MSI" relationship for Pt/MXene nanocatalysts and may shed light on the design of novel nanocatalysts.

3.
Front Microbiol ; 15: 1426911, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39171254

RESUMEN

Immune thrombocytopenia (ITP) is an autoimmune disease characterized by increased platelet destruction and impaired production, leading to an elevated bleeding tendency. Recent studies have demonstrated an important link between the gut microbiota and the onset and progression of several immune diseases in humans, emphasizing that gut microbiota-derived metabolites play a non-negligible role in autoimmune diseases. The gut microbiota and its metabolites, such as short-chain fatty acids, oxidized trimethylamine, tryptophan metabolites, secondary bile acids and lipopolysaccharides, can alter intestinal barrier permeability by modulating immune cell differentiation and cytokine secretion, which in turn affects the systemic immune function of the host. It is therefore reasonable to hypothesize that ecological dysregulation of the gut microbiota may be an entirely new factor in the triggering of ITP. This article reviews the potential immune-related mechanisms of the gut microbiota and representative metabolites in ITP, as well as the important influence of leaky gut on the development of ITP, with a view to enriching the theoretical system of ITP-related gut microecology and providing new ideas for the study of ITP.

4.
Nanotechnology ; 35(47)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39154654

RESUMEN

The exploration of deep space significantly increases the probability of spacecraft failures due to surface electrostatic discharge, which imposes higher vacuum insulation protection requirements on polyimide (PI), the external insulation material of spacecrafts. To address this challenge, this study proposes using silane coupling agent KH550 for organic grafting treatment of Cr2O3nanoparticles, which are then used to dope and modify PI to enhance the vacuum surface insulation of PI films. The KH550 grafting improves the interface strength between the fillers and the matrix, allowing the fillers to be uniformly dispersed in the matrix. Compared to pure PI films, the prepared PI-Cr2O3@KH550 composite films exhibit significantly enhanced vacuum surface flashover voltage, improved surface/volume resistivity, and dielectric properties. The results demonstrate that PI composite films with 0.8% by mass of Cr2O3@KH550 show the most notable performance improvement, with the DC flashover voltage and impulse flashover voltage in vacuum increasing by 20.7% and 27.8%, respectively. The doping of chromium oxide nanoparticles introduces more deep traps into the PI films and reduce the surface resistivity. The higher deep trap density inhibits charge migration, thereby alleviating secondary electron emission and surface electric field distortion. Simultaneously, the lower surface resistivity facilitates dissipating surface charges and improves the surface insulation. These findings are of significant reference value for promoting the enhancement of aerospace insulation performance.

5.
Oncol Rep ; 52(3)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38994769

RESUMEN

Following the publication of the above paper, it was drawn to the Editor's attention by a concerned reader that the 'Control' data panel shown for the EdU assay experiment in Fig. 6D on p. 1209 was strikingly similar to a data panel featured in Fig. 7 that had already been submitted to the journal Cancer Management and Research by different authors at different research institutes [Chen T­J, Gao F, Yang T, Li H, Li Y, Ren H and Chen M­W: Knockdown of linc­POU3F3 suppresses the proliferation, apoptosis, and migration resistance of colorectal cancer. Cancer Manag Res 12: 4379­4390, 2020]. Owing to the fact that contentious data in the above article had already been submitted for publication prior to its submission to Oncology Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 45: 1202­1212, 2021; DOI: 10.3892/or.2021.7949].

6.
Front Cardiovasc Med ; 11: 1385943, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055663

RESUMEN

Background: Patients with chronic obstructive pulmonary disease (COPD) after acute coronary artery syndrome (ACS) are at an increased risk of heart failure and death. However, ß-blockers have been underused in this population group due to concerns of adverse reactions. Objective: This study aims to investigate the ß-blocker prescription at admission and its impact on the in-hospital outcomes in patients with COPD after ACS in a Chinese national cohort. Methods: Among 113,650 patients with ACS enrolled in the national registry of the Improving Care for Cardiovascular Disease in China between November 2014 and July 2019, a total of 1,084 ACS patients with COPD were included in this study. The primary endpoint was in-hospital mortality, and the secondary endpoint was the composite of in-hospital all-cause death and heart failure. Results: Early oral ß-blocker therapy was administered to 49.8% of patients. The Kaplan-Meier analysis showed that the early ß-blocker treatment group had lower all-cause mortality (0.9% vs. 2.9%; P < 0.05) and lower combined endpoint event rate (8.2% vs. 12.0%; P < 0.05) compared to the those of the non-early ß-blocker treatment group. The analysis of inverse probability of treatment weighting showed that the early ß-blocker treatment group was associated with a significantly reduced incidence of all-cause death (risk ratio, 0.332, 0.119-0.923, P = 0.035), heart failure (risk ratio, 0.625, 95% CI 0.414-0.943, P = 0.025), and combined endpoint events (risk ratio: 0.616, 95% CI: 0.418-0.908, P = 0.014). In the subgroup of patients over 70 years of age, the corresponding hazard ratio was 0.268 (95% CI 0.077-0.938) for all-cause mortality and 0.504 (95% CI 0.316-0.805) for combined endpoint events. Conclusion: ß-blockers have been underused in patients with COPD and ACS in China. Early ß-blocker therapy is associated with an improvement in in-hospital outcomes in patients with COPD after ACS. Clinical Trial Registration: ClinicalTrials.gov, identifier (NCT02306616).

7.
Adv Sci (Weinh) ; : e2309983, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031630

RESUMEN

The success of immunotherapy for cancer treatment is limited by the presence of an immunosuppressive tumor microenvironment (TME); Therefore, identifying novel targets to that can reverse this immunosuppressive TME and enhance immunotherapy efficacy is essential. In this study, enrichment analysis based on publicly available single-cell and bulk RNA sequencing data from gastric cancer patients are conducted, and found that tumor-intrinsic interferon (IFN) plays a central role in TME regulation. The results shows that KDM3A over-expression suppresses the tumor-intrinsic IFN response and inhibits KDM3A, either genomically or pharmacologically, which effectively promotes IFN responses by activating endogenous retroviruses (ERVs). KDM3A ablation reconfigures the dsRNA-MAVS-IFN axis by modulating H3K4me2, enhancing the infiltration and function of CD8 T cells, and simultaneously reducing the presence of regulatory T cells, resulting in a reshaped TME in vivo. In addition, combining anti-PD1 therapy with KDM3A inhibition effectively inhibited tumor growth. In conclusions, this study highlights KDM3A as a potential target for TME remodeling and the enhancement of antitumor immunity in gastric cancer through the regulation of the ERV-MAVS-IFN axis.

8.
mLife ; 3(2): 251-268, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38948143

RESUMEN

Broad-spectrum antibacterial drugs often lack specificity, leading to indiscriminate bactericidal activity, which can disrupt the normal microbial balance of the host flora and cause unnecessary cytotoxicity during systemic administration. In this study, we constructed a specifically targeted antimicrobial peptide against Staphylococcus aureus by introducing a phage-displayed peptide onto a broad-spectrum antimicrobial peptide and explored its structure-function relationship through one-factor modification. SFK2 obtained by screening based on the selectivity index and the targeting index showed specific killing ability against S. aureus. Moreover, SFK2 showed excellent biocompatibility in mice and piglet, and demonstrated significant therapeutic efficacy against S. aureus infection. In conclusion, our screening of phage-derived heptapeptides effectively enhances the specific bactericidal ability of the antimicrobial peptides against S. aureus, providing a theoretical basis for developing targeted antimicrobial peptides.

9.
Blood Adv ; 8(18): 4886-4899, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-38875465

RESUMEN

ABSTRACT: Exosomes have emerged as promising vehicles for delivering therapeutic cargoes to specific cells or tissues, owing to their superior biocompatibility, reduced immunogenicity, and enhanced targeting capabilities compared with conventional drug delivery systems. In this study, we developed a delivery platform using exosomes derived from monocytes, specifically designed for targeted delivery of bortezomib (Btz) to multiple myeloma (MM) cells. Our approach involved the genetic modification of monocytes to express antibodies targeting B-cell maturation antigen (anti-BCMA), because BCMA selectively expresses on myeloma cells. This modified anti-BCMA was then efficiently incorporated into the monocyte-derived exosomes. These adapted exosomes effectively encapsulated Btz, leading to enhanced drug accessibility within MM cells and sustained intracellular accumulation over an extended period. Remarkably, our results demonstrated that anti-BCMA-modified exosome-loaded Btz (anti-BCMA-Exo-Btz) outperformed free Btz in vitro, exhibiting a more potent myeloma-suppressive effect. In orthotopic MM xenograft models, anti-BCMA-Exo-Btz exhibited a significant antitumor effect compared with free Btz. Furthermore, it demonstrated remarkable specificity in targeting Btz to myeloma cells in vivo. Importantly, we observed no significant histological damage in mice treated with anti-BCMA-Exo-Btz and a slight effect on peripheral blood mononuclear cells. In addition, our study highlighted the multifunctional potential of monocyte exosomes, which induced cell apoptosis, mediated immune responses, and enhanced the osteogenic potential of mesenchymal stromal cells. In conclusion, our study suggests that exosomes modified with targeting ligands hold therapeutic promise for delivering Btz to myelomas, offering substantial potential for clinical applications.


Asunto(s)
Antígeno de Maduración de Linfocitos B , Bortezomib , Sistemas de Liberación de Medicamentos , Exosomas , Mieloma Múltiple , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/terapia , Exosomas/metabolismo , Bortezomib/farmacología , Bortezomib/uso terapéutico , Bortezomib/administración & dosificación , Humanos , Animales , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Modelos Animales de Enfermedad , Monocitos/metabolismo
10.
Sci Data ; 11(1): 638, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886400

RESUMEN

Despite the importance of measuring racial-ethnic segregation and diversity in the United States, current measurements are largely based on the Census and, thus, only reflect segregation and diversity as understood through residential location. This leaves out the social contexts experienced throughout the course of the day during work, leisure, errands, and other activities. The National Experienced Racial-ethnic Diversity (NERD) dataset provides estimates of diversity for the entire United States at the census tract level based on the range of place and times when people have the opportunity to come into contact with one another. Using anonymized and opted-in mobile phone location data to determine co-locations of people and their demographic backgrounds, these measurements of diversity in potential social interactions are estimated at 38.2 m × 19.1 m scale and 15-minute timeframe for a representative year and aggregated to the Census tract level for purposes of data privacy. As well, we detail some of the characteristics and limitations of the data for potential use in national, comparative studies.


Asunto(s)
Diversidad Cultural , Etnicidad , Grupos Raciales , Humanos , Estados Unidos
11.
Front Neurol ; 15: 1358167, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38770525

RESUMEN

Stroke is a cerebrovascular illness that brings about the demise of brain tissue. It is the third most prevalent cause of mortality worldwide and a significant contributor to physical impairment. Generally, stroke is triggered by blood clots obstructing the brain's blood vessels, or when these vessels rupture. And, the cognitive impairment's evaluation and detection after stroke is crucial research issue and significant project. Thus, the objective of this work is to explore an potential neuroimage tool and find their EEG biomarkers to evaluate and detect four cognitive impairment levels after stroke. In this study, power density spectrum (PSD), functional connectivity map, and one-way ANOVA methods were proposed to analyze the EEG biomarker differences, and the number of patient participants were thirty-two human including eight healthy control, mild, moderate, severe cognitive impairment levels, respectively. Finally, healthy control has significant PSD differences compared to mid, moderate and server cognitive impairment groups. And, the theta and alpha bands of severe cognitive impairment groups have presented consistent superior PSD power at the right frontal cortex, and the theta and beta bands of mild, moderated cognitive impairment (MoCI) groups have shown significant similar superior PSD power tendency at the parietal cortex. The significant gamma PSD power difference has presented at the left-frontal cortex in the mild cognitive impairment (MCI) groups, and severe cognitive impairment (SeCI) group has shown the significant PSD power at the gamma band of parietal cortex. At the point of functional connectivity map, the SeCI group appears to have stronger functional connectivity compared to the other groups. In conclusion, EEG biomarkers can be applied to classify different cognitive impairment groups after stroke. These findings provide a new approach for early detection and diagnosis of cognitive impairment after stroke and also for the development of new treatment options.

12.
Cell ; 187(12): 2935-2951.e19, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38772371

RESUMEN

Peripheral sensory neurons widely innervate various tissues to continuously monitor and respond to environmental stimuli. Whether peripheral sensory neurons innervate the spleen and modulate splenic immune response remains poorly defined. Here, we demonstrate that nociceptive sensory nerve fibers extensively innervate the spleen along blood vessels and reach B cell zones. The spleen-innervating nociceptors predominantly originate from left T8-T13 dorsal root ganglia (DRGs), promoting the splenic germinal center (GC) response and humoral immunity. Nociceptors can be activated by antigen-induced accumulation of splenic prostaglandin E2 (PGE2) and then release calcitonin gene-related peptide (CGRP), which further promotes the splenic GC response at the early stage. Mechanistically, CGRP directly acts on B cells through its receptor CALCRL-RAMP1 via the cyclic AMP (cAMP) signaling pathway. Activating nociceptors by ingesting capsaicin enhances the splenic GC response and anti-influenza immunity. Collectively, our study establishes a specific DRG-spleen sensory neural connection that promotes humoral immunity, suggesting a promising approach for improving host defense by targeting the nociceptive nervous system.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Centro Germinal , Inmunidad Humoral , Bazo , Animales , Masculino , Ratones , Linfocitos B/inmunología , Linfocitos B/metabolismo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Capsaicina/farmacología , AMP Cíclico/metabolismo , Dinoprostona/metabolismo , Ganglios Espinales/metabolismo , Centro Germinal/inmunología , Ratones Endogámicos C57BL , Nociceptores/metabolismo , Proteína 1 Modificadora de la Actividad de Receptores/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Transducción de Señal , Bazo/inervación , Bazo/inmunología , Femenino
13.
Nat Commun ; 15(1): 2433, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499545

RESUMEN

Nonlinear optical processing of ambient natural light is highly desired for computational imaging and sensing. Strong optical nonlinear response under weak broadband incoherent light is essential for this purpose. By merging 2D transparent phototransistors (TPTs) with liquid crystal (LC) modulators, we create an optoelectronic neuron array that allows self-amplitude modulation of spatially incoherent light, achieving a large nonlinear contrast over a broad spectrum at orders-of-magnitude lower intensity than achievable in most optical nonlinear materials. We fabricated a 10,000-pixel array of optoelectronic neurons, and experimentally demonstrated an intelligent imaging system that instantly attenuates intense glares while retaining the weaker-intensity objects captured by a cellphone camera. This intelligent glare-reduction is important for various imaging applications, including autonomous driving, machine vision, and security cameras. The rapid nonlinear processing of incoherent broadband light might also find applications in optical computing, where nonlinear activation functions for ambient light conditions are highly sought.

14.
Acad Radiol ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519303

RESUMEN

RATIONALE AND OBJECTIVES: To evaluate the value of dual-energy CT (DECT) virtual noncalcium (VNCa) images in the diagnosis of wrist bone marrow edema (BME) in patients with rheumatoid arthritis (RA). MATERIALS AND METHODS: 43 patients with wrist involvement in active RA prospectively underwent DECT and MRI. Functional DECT images reconstruction yielded VNCa images. MRI served as the reference standard for diagnosing BME. BME diagnosis differences between VNCa images and MRI were compared. Differences in CT values between BME and normal bone marrow were assessed. The optimal CT value for detecting BME in VNCa images was determined through ROC curve analysis. The correlation between VNCa images scores and RA disease activity was evaluated. RESULTS: There was a high agreement between VNCa images and MRI in diagnosing BME (Kappa=0.831). VNCa images showed a significant difference in CT values between BME and normal bone marrow (P < 0.001). A cut-off value of - 54.8 HU yielded a sensitivity, specificity, and accuracy of 90.72%, 94.30%, and 93.33%, respectively, for detecting BME on VNCa images. The area under the ROC curve was 0.937 for distinguishing BME from normal bone marrow. Conventional CT images showed no statistically significant difference (P = 0.174) in CT values between BME and normal bone marrow. The VNCa images BME scores were positively correlated with RA disease activity (r = 0.399). CONCLUSION: The DECT VNCa technique demonstrates its potential for diagnosing wrist BME in patients with RA and provides a valuable tool for assessing disease activity in RA. IMPORTANT FINDINGS: The DECT VNCa technique has the ability to distinguish between BME and normal bone marrow. The VNCa images BME scores were positively correlated with the disease activity in RA.

15.
J Anim Sci Biotechnol ; 15(1): 44, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38475886

RESUMEN

Staphylococcus aureus (S. aureus) is a common pathogenic bacterium in animal husbandry that can cause diseases such as mastitis, skin infections, arthritis, and other ailments. The formation of biofilms threatens and exacerbates S. aureus infection by allowing the bacteria to adhere to pathological areas and livestock product surfaces, thus triggering animal health crises and safety issues with livestock products. To solve this problem, in this review, we provide a brief overview of the harm caused by S. aureus and its biofilms on livestock and animal byproducts (meat and dairy products). We also describe the ways in which S. aureus spreads in animals and the threats it poses to the livestock industry. The processes and molecular mechanisms involved in biofilm formation are then explained. Finally, we discuss strategies for the removal and eradication of S. aureus and biofilms in animal husbandry, including the use of antimicrobial peptides, plant extracts, nanoparticles, phages, and antibodies. These strategies to reduce the spread of S. aureus in animal husbandry help maintain livestock health and improve productivity to ensure the ecologically sustainable development of animal husbandry and the safety of livestock products.

16.
Microbes Infect ; 26(4): 105315, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38417673

RESUMEN

BACKGROUND: The current study proposed a novel subtype, Human papillomavirus (HPV)-infected colorectal cancer (CRC), to understand the impact of HPV on CRC. METHODS: We assessed the prevalence and clinical implications of HPV in CRC by integrating a single cohort in Guangdong Provincial People's Hospital and public datasets. Differential gene, pathway enrichment, and immune infiltration analysis were conducted to explore the patterns in HPV-infected CRC. Quantitative polymerase chain reaction, cell proliferation, scratch, and flow cytometry assays were employed to validate the impact of HPV on CRC. RESULTS: The study revealed a high prevalence of HPV infection in CRC, with infection rates ranging from 10% to 31%. There was also a significant increase in tumor proliferation in HPV-infected CRC. The study showed increased immune cell infiltration, including T cells, γδ T cells, cytotoxic cells, and plasmacytoid dendritic cells in HPV-infected CRC (P < 0.05). Furthermore, our findings confirmed that HPV infection promoted M1 polarization. Our results demonstrated that low ISM2 expression was associated with a less advanced clinical stage (P < 0.001) and better survival outcomes (P = 0.039). Low ISM2 expression correlated with a strong tumor immune response, potentially contributing to the improved survival observed in HPV-infected CRC. CONCLUSIONS: These findings provided a novel subtype of HPV-infected CRC. The subtype with a better prognosis showed a "hot" tumor immune microenvironment that may be responsive to immunotherapy.


Asunto(s)
Neoplasias Colorrectales , Infecciones por Papillomavirus , Microambiente Tumoral , Humanos , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/virología , Neoplasias Colorrectales/patología , Microambiente Tumoral/inmunología , Infecciones por Papillomavirus/inmunología , Infecciones por Papillomavirus/virología , Femenino , Masculino , Persona de Mediana Edad , Papillomaviridae/genética , Papillomaviridae/inmunología , Proliferación Celular , Anciano , Estudios de Cohortes , Prevalencia
17.
Chem Sci ; 15(5): 1782-1788, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38303930

RESUMEN

The flexoelectric effect, which refers to the mechanical-electric coupling between strain gradient and charge polarization, should be considered for use in charge production for catalytically driving chemical reactions. We have previously revealed that halide perovskites can generate orders of higher magnitude flexoelectricity under the illumination of light than in the dark. In this study, we report the catalytic hydrogen production by photo-mechanical coupling involving the photoflexoelectric effect of flexible methylammonium lead iodide (MAPbI3) nanowires (NWs) in hydrogen iodide solution. Upon concurrent light illumination and mechanical vibration, large strain gradients were introduced in flexible MAPbI3 NWs, which subsequently induced significant hydrogen generation (at a rate of 756.5 µmol g-1 h-1, surpassing those values from either photo- or piezocatalysis of MAPbI3 nanoparticles). This photo-mechanical coupling strategy of mechanocatalysis, which enables the simultaneous utilization of multiple energy sources, provides a potentially new mechanism in mechanochemistry for highly efficient hydrogen production.

18.
Int J Nanomedicine ; 19: 901-915, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38293609

RESUMEN

Background: Diabetic nephropathy (DN) is a prevalent complication of diabetes mellitus and constitutes the primary cause of mortality in affected patients. Previous studies have shown that placental mesenchymal stem cells (PL-MSCs) can alleviate kidney dysfunction in animal models of DN. However, the limited ability of mesenchymal stem cells (MSCs) to home to damaged sites restricts their therapeutic potential. Enhancing the precision of PL-MSCs' homing to target tissues is therefore vital for the success of cell therapies in treating DN. Methods: We developed Fe3O4 coated polydopamine nanoparticle (NP)-internalized MSCs and evaluated their therapeutic effectiveness in a mouse model of streptozotocin- and high-fat diet-induced DN, using an external magnetic field. Results: Our study confirmed that NPs were effectively internalized into PL-MSCs without compromising their intrinsic stem cell properties. The magnetic targeting of PL-MSCs notably improved their homing to the kidney tissues in mice with DN, resulting in enhanced kidney function compared to the transplantation of PL-MSCs alone. Furthermore, the anti-inflammatory and antifibrotic attributes of PL-MSCs played a role in the recovery of kidney function and structure. Conclusion: These results demonstrate that magnetically targeted therapy using PL-MSCs is a promising approach for treating diabetic nephropathy.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Embarazo , Femenino , Ratones , Animales , Nefropatías Diabéticas/terapia , Placenta , Modelos Animales de Enfermedad , Trasplante de Células Madre Mesenquimatosas/métodos
19.
Front Neurosci ; 17: 1269359, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075282

RESUMEN

In the context of population aging, the growing problem of Alzheimer's disease (AD) poses a great challenge to mankind. Although there has been considerable progress in exploring the etiology of AD, i.e., the important role of amyloid plaques and neurofibrillary tangles in the progression of AD has been widely accepted by the scientific community, traditional treatment and monitoring modalities have significant limitations. Therefore novel evaluation and treatment modalities for Alzheimer's disease are called for emergence. In this research, we sought to review the effectiveness of digital treatment based on monitoring using functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG). This work searched four electronic databases using a keyword approach and focused on journals focusing on AD and geriatric cognition. Finally, 21 articles were included. The progress of digital therapy and outcome monitoring in AD was reviewed, including digital therapy approaches on different platforms and different neuromonitoring techniques. Because biomarkers such as theta coherence, alpha and beta rhythms, and oxyhemoglobin are effective in monitoring the cognitive level of AD patients, and thus the efficacy of digital therapies, this review particularly focuses on the biomarker validation results of digital therapies. The results show that digital treatment based on biomarker monitoring has good effectiveness. And the effectiveness is reflected in the numerical changes of biomarker indicators monitored by EEG and fNIRS before and after digital treatment. Increases or decreases in the values of these indicators collectively point to improvements in cognitive function (mostly moderate to large effect sizes). The study is the first to examine the state of digital therapy in AD from the perspective of multimodal monitoring, which broadens the research perspective on the effectiveness of AD and gives clinical therapists a "reference list" of treatment options. They can select a specific protocol from this "reference list" in order to tailor digital therapy to the needs of individual patients.

20.
PLoS One ; 18(12): e0295278, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38039313

RESUMEN

Mechanical faults are the main causes of abnormal opening, refusal operation, or malfunction of high-voltage circuit breakers. Accurately assessing the operational condition of high-voltage circuit breakers and delivering fault evaluations is essential for the power grid's safety and reliability. This article develops a circuit breaker fault monitoring device, which diagnoses the mechanical faults of the circuit breaker by monitoring the vibration information data. At the same time, the article adopts an improved deep learning method to train vibration information of high-voltage circuit breakers, and based on this, a systematic research method is employed to identify circuit breaker faults. Firstly, vibration information data of high-voltage circuit breakers is obtained through monitoring devices, this vibration data is then trained using deep learning methods to extract features corresponding to various fault types. Secondly, using the extracted features, circuit breaker faults are classified and recognized with a systematic analysis of the progression traits across various fault categories. Finally, the circuit breaker's fault type is ascertained by comparing the test set's characteristics with those of the training set, using the vibration data. The experimental results show that for the same type of circuit breaker, the accuracy of this method is over 95%, providing a more efficient, intuitive, and practical method for online diagnosis and fault warning of high-voltage circuit breakers.


Asunto(s)
Aprendizaje Profundo , Reproducibilidad de los Resultados , Fenotipo , Proyectos de Investigación , Análisis de Sistemas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA