Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 99
1.
Arch Osteoporos ; 19(1): 42, 2024 May 25.
Article En | MEDLINE | ID: mdl-38796579

This study examines the relationship between TyG-BMI, an indicator of insulin resistance, and bone mineral density in US adults without diabetes, revealing a positive association. The findings suggest that higher TyG-BMI levels may be linked to a lower risk of osteoporosis, providing a basis for future research in this area. OBJECTIVE: Patients with osteoporosis are often diagnosed with type 2 diabetes or prediabetes. Insulin resistance is a prediabetic state, and triglyceride glucose-body mass index (TyG-BMI) has been recognized as a potential predictor of it, valuable in assessing prediabetes, atherosclerosis, and other diseases. However, the validity of TyG-BMI in osteoporosis studies remains inadequate. PURPOSE: The purpose of this study was to evaluate the relationship between TyG-BMI and BMD as well as the effect of TyG-BMI on the odds of developing osteoporosis in US adults without diabetes. METHODS: National Health and Nutrition Examination Survey data were obtained. The relationship between TyG-BMI and BMD was evaluated via multivariate linear regression models. Smoothed curve fitting and threshold effect analysis explored potential non-linear relationships, and age, gender, and race subgroup analyses were performed. In addition, multivariate logistic regression models were employed to analyze its potential role in the development of osteoporosis. RESULTS: In a study of 6501 participants, we observed a significant positive correlation between the TyG-BMI index and BMD, even after adjusting for covariates and categorizing TyG-BMI. The study identified specific TyG-BMI folding points-112.476 for the total femur BMD, 100.66 for the femoral neck BMD, 107.291 for the intertrochanter BMD, and 116.58 for the trochanter BMD-indicating shifts in the relationship's strength at these thresholds. While the association's strength slightly decreased after the folding points, it remained significant. Subgroup analyses further confirmed the positive TyG-BMI and BMD correlation. Multivariate linear regression analyses indicated a lower osteoporosis risk in participants with higher TyG-BMI levels, particularly in menopausal women over 40 and men over 60. CONCLUSION: This study suggests a positive correlation between BMD and TyG-BMI in US adults without diabetes. Individuals with higher levels of TyG-BMI may have a lower risk of osteoporosis.


Biomarkers , Body Mass Index , Bone Density , Insulin Resistance , Osteoporosis , Humans , Male , Female , Insulin Resistance/physiology , Middle Aged , Adult , United States/epidemiology , Osteoporosis/epidemiology , Osteoporosis/blood , Biomarkers/blood , Aged , Blood Glucose/analysis , Blood Glucose/metabolism , Triglycerides/blood , Nutrition Surveys
2.
Cardiology ; 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38565095

INTRODUCTION: This study aims to evaluate the learning curve associated with the no-touch vein harvesting technique in off-pump coronary artery bypass grafting (CABG), highlighting its impact on surgical proficiency. METHODS: We employed logarithmic curve fitting to analyze the learning curves of 160 patients undergoing no-touch CABG, with a detailed retrospective examination of 89 patients who received three grafts using Cumulative Sum (CUSUM) analysis. Patients were categorized into two phases: the initial learning phase and the subsequent mastery phase, based on the chronological order of surgeries. We then compared perioperative outcomes between these phases. RESULTS: The learning curve for the no-touch vein harvesting technique was quantitatively established at 51 cases via CUSUM analysis, with supporting evidence from logarithmic curve fitting indicating a significant proficiency milestone. In the mastery phase, median operative times, aorta-saphenous vein graft (SVG) anastomosis, and SVG inspection durations were notably reduced (230 vs. 250 minutes, P = 0.002; 11.5 vs. 13.0 minutes, P = 0.025; 9.0 vs. 11.0 minutes, P = 0.002, respectively), alongside decreased initial 48-hour chest tube drainage, shorter postoperative hospital stays, and fewer incidences of delayed leg incision healing compared to the learning phase [312.6 (140.7) ml vs. 401.0 (233.5) ml, P = 0.029; 11.0 d vs. 12.0 d, P = 0.026; 15.7% vs. 2.6%, P = 0.043)]. CONCLUSION: Cardiac surgeons adopting the full-incision SVG harvesting method for no-touch CABG undergo a discernible learning curve before achieving early proficiency. It is crucial, especially during the initial learning phase, to focus on aorta-SVG anastomosis, the meticulous inspection for bleeding, and the management of wound complications to optimize patient outcomes.

3.
J Steroid Biochem Mol Biol ; 240: 106498, 2024 Jun.
Article En | MEDLINE | ID: mdl-38447903

Phytosterols are vital structural and regulatory components in plants. Zea mays produces a series of phytosterols that are specific to corn. However, the underline biosynthetic mechanism remains elusive. In this study, we identified a novel sterol methyltransferase from Z. mays (ZmSMT1-2) which showed a unique feature compared with documented plant SMTs. ZmSMT1-2 showed a substrate preference for cycloartenol. Using S-adenosyl-L-methionine (AdoMet) as a donor, ZmSMT1-2 converted cycloartenol into alkylated sterols with unique side-chain architectures, including Δ25(27) (i.e., cyclolaudenol and cycloneolitsol) and Δ24(25) (i.e., cyclobranol) sterols. Cycloneolitsol is identified as a product of SMTs for the first time. Our discovery provides a previously untapped mechanism for phytosterol biosynthesis and adds another layer of diversity of sterol biosynthesis.


Methyltransferases , Phytosterols , Triterpenes , Zea mays , Zea mays/metabolism , Phytosterols/metabolism , Phytosterols/chemistry , Methyltransferases/metabolism , Methyltransferases/chemistry , Methyltransferases/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/chemistry , Substrate Specificity , S-Adenosylmethionine/metabolism , S-Adenosylmethionine/chemistry
4.
J Am Heart Assoc ; 13(3): e032100, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38258658

BACKGROUND: Atrial fibrillation (AF) increases risk of embolic stroke, and in postoperative patients, increases cost of care. Consequently, ECG screening for AF in high-risk patients is important but labor-intensive. Artificial intelligence (AI) may reduce AF detection workload, but AI development presents challenges. METHODS AND RESULTS: We used a novel approach to AI development for AF detection using both surface ECG recordings and atrial epicardial electrograms obtained in postoperative cardiac patients. Atrial electrograms were used only to facilitate establishing true AF for AI development; this permitted the establishment of an AI-based tool for subsequent AF detection using ECG records alone. A total of 5 million 30-second epochs from 329 patients were annotated as AF or non-AF by expert ECG readers for AI training and validation, while 5 million 30-second epochs from 330 different patients were used for AI testing. AI performance was assessed at the epoch level as well as AF burden at the patient level. AI achieved an area under the receiver operating characteristic curve of 0.932 on validation and 0.953 on testing. At the epoch level, testing results showed means of AF detection sensitivity, specificity, negative predictive value, positive predictive value, and F1 (harmonic mean of positive predictive value and sensitivity) as 0.970, 0.814, 0.976, 0.776, and 0.862, respectively, while the intraclass correlation coefficient for AF burden detection was 0.952. At the patient level, AF burden sensitivity and positive predictivity were 96.2% and 94.5%, respectively. CONCLUSIONS: Use of both atrial electrograms and surface ECG permitted development of a robust AI-based approach to postoperative AF recognition and AF burden assessment. This novel tool may enhance detection and management of AF, particularly in patients following operative cardiac surgery.


Atrial Fibrillation , Humans , Atrial Fibrillation/diagnosis , Artificial Intelligence , Electrophysiologic Techniques, Cardiac , Electrocardiography/methods , Hospitals
5.
Virol J ; 21(1): 24, 2024 01 23.
Article En | MEDLINE | ID: mdl-38263068

BACKGROUND: The Corona Virus Disease 2019 (COVID-19) pandemic has raised concerns regarding its potential impact on male reproductive health. However, the impact of COVID-19 on sperm quality remains uncertain. This retrospective study aimed to investigate the short-term and relatively long-term effects of COVID-19 infection on sperm quality. METHODS: A total of 85 males with fertility requirements, who underwent semen evaluation at Guilin People's Hospital between June 2022 and July 2023, were included in the study. Changes in semen parameters were analyzed across three specific timeframes: within 6 months before COVID-19 infection, within 3 months after COVID-19 infection, and 3-6 months after COVID-19 recovery. RESULTS: The results revealed that the sperm concentration and total sperm number were significantly lower after infection compared to before, while in the recovery period, the sperm concentration, total sperm count, progressive motility, and normal morphology significantly increased. Comparing the three periods, the most significant difference was observed in sperm concentration, which exhibited a significant decrease after infection but returned to normal levels after recovery from COVID-19. CONCLUSIONS: These findings suggest that COVID-19 may exert some impact on sperm quality, particularly evidenced by decreased sperm concentration post-infection. Fortunately, these effects on semen parameters appear to be temporary, with gradual restoration of semen parameters within 3-6 months after recovery. However, further research is needed to explore the underlying mechanisms and long-term implications of these observed changes in semen parameters.


COVID-19 , Semen , Male , Humans , Retrospective Studies , Spermatozoa , Hospitals
6.
Cancer Causes Control ; 35(2): 323-334, 2024 Feb.
Article En | MEDLINE | ID: mdl-37737303

PURPOSE OF THE STUDY: Breast density is an established risk factor for breast cancer. However, little is known about metabolic influences on breast density phenotypes. We conducted untargeted serum metabolomics analyses to identify metabolic signatures associated with breast density phenotypes among young women. METHODS: In a cross-sectional study of 173 young women aged 25-29 who participated in the Dietary Intervention Study in Children 2006 Follow-up Study, 449 metabolites were measured in fasting serum samples using ultra-high-performance liquid chromatography-tandem mass spectrometry. Multivariable-adjusted mixed-effects linear regression identified metabolites associated with magnetic resonance imaging measured breast density phenotypes: percent dense breast volume (%DBV), absolute dense breast volume (ADBV), and absolute non-dense breast volume (ANDBV). Metabolite results were corrected for multiple comparisons using a false discovery rate adjusted p-value (q). RESULTS: The amino acids valine and leucine were significantly inversely associated with %DBV. For each 1 SD increase in valine and leucine, %DBV decreased by 20.9% (q = 0.02) and 18.4% (q = 0.04), respectively. ANDBV was significantly positively associated with 16 lipid and one amino acid metabolites, whereas no metabolites were associated with ADBV. Metabolite set enrichment analysis also revealed associations of distinct metabolic signatures with %DBV, ADBV, and ANDBV; branched chain amino acids had the strongest inverse association with %DBV (p = 0.002); whereas, diacylglycerols and phospholipids were positively associated with ANDBV (p ≤ 0.002), no significant associations were observed for ADBV. CONCLUSION: Our results suggest an inverse association of branched chain amino acids with %DBV. Larger studies in diverse populations are needed.


Breast Density , Breast Neoplasms , Child , Female , Humans , Leucine , Cross-Sectional Studies , Follow-Up Studies , Mammography , Amino Acids, Branched-Chain , Valine
7.
Cell Immunol ; 395-396: 104797, 2024.
Article En | MEDLINE | ID: mdl-38157646

Vγ9Vδ2 T lymphocytes are programmed for broad antimicrobial responses with rapid production of Th1 cytokines even before birth, and thus thought to play key roles against pathogens in infants. The process regulating Vδ2 cell acquisition of cytotoxic potential shortly after birth remains understudied. We observed that perforin production in cord blood Vδ2 cells correlates with phenotypes defined by the concomitant assessment of PD-1 and CD56. Bulk RNA sequencing of sorted Vδ2 cell fractions indicated that transcripts related to cytotoxic activity and NK function are enriched in the subset with the highest proportion of perforin+ cells. Among differentially expressed transcripts, IRF8, previously linked to CD8 T cell effector differentiation and NK maturation, has the potential to mediate Vδ2 cell differentiation towards cytotoxic effectors. Our current and past results support the hypothesis that distinct mechanisms regulate Vδ2 cell cytotoxic function before and after birth, possibly linked to different levels of microbial exposure.


CD56 Antigen , CD8-Positive T-Lymphocytes , Cytotoxicity, Immunologic , Programmed Cell Death 1 Receptor , Receptors, Antigen, T-Cell, gamma-delta , T-Lymphocyte Subsets , Humans , CD8-Positive T-Lymphocytes/immunology , Cytokines/metabolism , Fetal Blood , Perforin/genetics , Perforin/metabolism , Programmed Cell Death 1 Receptor/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocyte Subsets/immunology , CD56 Antigen/metabolism
8.
Int J Radiat Biol ; 99(7): 1009-1015, 2023.
Article En | MEDLINE | ID: mdl-36763099

PURPOSE: The intent of this mini review is to pay homage to Dr. John E. Moulder's long and successful career in radiation science with the Medical College of Wisconsin. This effort will be done from the perspective of his history of U.S. Government funding for research into the biological pathways involved in radiation-induced normal tissue injuries, especially damage to the kidneys and heart, and pharmacological interventions. In addition, the impact of his steady guidance and leadership in the mentoring of junior scientists, and the development of meaningful collaborations with other researchers will be highlighted. CONCLUSION: Dr. John E. Moulder's contributions to the field of radiation research, through his strong character and reputation, his consistent and dedicated commitment to his colleagues and students, and his significant scientific advances, have been critical to moving the science forward, and will not be forgotten by those who knew him personally or through publications documenting his important work.


Mentoring , Humans , Male , Universities , Research Personnel
9.
Obesity (Silver Spring) ; 31(2): 525-536, 2023 02.
Article En | MEDLINE | ID: mdl-36642094

OBJECTIVE: Body mass index (BMI) does not directly measure adiposity, whereas dual-energy x-ray absorptiometry (DXA) provides valid direct estimates of adiposity. Therefore, this study evaluated usefulness of BMI as a measure of adiposity in serum metabolomics studies. METHODS: A cross-sectional analysis was conducted of 202 women aged 25 to 29 years in the Dietary Intervention Study in Children Follow-Up Study. Heights and weights were measured, and body composition was quantified using clinical DXA protocols. Serum metabolomic profiling was performed by liquid chromatography-tandem mass spectrometry. Partial correlations of BMI, percentage fat (%FAT), and total fat (TOTFAT) with log transformed serum metabolites were calculated. RESULTS: There was significant overlap in the 93 metabolites that correlated with BMI, %FAT, and/or TOTFAT; 9 differently correlated with BMI and %FAT, whereas 15 differently correlated with BMI and TOTFAT. Even for these metabolites, absolute differences were modest. Metabolite set enrichment analysis identified diacylglycerol and sphingolipid metabolism as overrepresented among metabolites significantly correlated with all three measures of adiposity. CONCLUSIONS: BMI can be a good proxy for DXA measured %FAT and TOTFAT in descriptive metabolomic studies of healthy, young White women. Larger studies in more diverse populations are needed to endorse more generalized conclusions.


Adiposity , Obesity , Child , Humans , Female , Body Mass Index , Follow-Up Studies , Absorptiometry, Photon , Cross-Sectional Studies , Obesity/diagnostic imaging , Obesity/metabolism , Body Composition
10.
J Thorac Cardiovasc Surg ; 165(4): e158-e174, 2023 04.
Article En | MEDLINE | ID: mdl-35461705

OBJECTIVES: The mechanisms underlying atrial fibrillation are yet to be elucidated. We sought to investigate the interactions among autonomic remodeling, epicardial adipose tissue, inflammation, and atrial fibrillation. METHODS: Myocardium and adjacent epicardial adipose tissue of the left atrial appendage, right atrial appendage, and pulmonary vein muscle sleeves were obtained from 61 consecutive patients (35 with atrial fibrillation, 26 with no atrial fibrillation) during mitral valve surgeries. Patients were divided into the atrial fibrillation group and no atrial fibrillation group according to the history and Holter monitoring before surgery. Sympathetic and parasympathetic innervation were evaluated by tyrosine hydroxylase and choline acetyltransferase staining, respectively. Atrial fibrosis as well as cytokines/adipokines and related inflammatory proteins and signaling pathways in the epicardial adipose tissue were examined. RESULTS: Immunohistochemical studies revealed significantly increased tyrosine hydroxylase (+) and choline acetyltransferase (+) neural elements in the left atrial appendage and pulmonary vein muscle sleeve myocardium, as well as adjacent epicardial adipose tissue in the atrial fibrillation group, particularly the pulmonary vein muscle sleeve sites. The receiver operating curve identified a threshold ratio (tyrosine hydroxylase/choline acetyltransferase) of 0.8986 in the epicardial adipose tissue (sensitivity = 82.86%; specificity = 80.77%; area under the curve = 0.85, 95% confidence interval = 0.76-0.95, P < .0001). More patients with a higher tyrosine hydroxylase/choline acetyltransferase ratio (≥0.8986) had atrial fibrillation. Expression levels of the genes and related proteins of the ß1 adrenergic, mitogen-activated protein kinase, and nuclear factor kappa B signaling pathways were higher in patients with a higher tyrosine hydroxylase/choline acetyltransferase ratio. The tyrosine hydroxylase/choline acetyltransferase ratio also correlated with fibrosis. CONCLUSIONS: Differentially enhanced autonomic remodeling and proinflammatory and profibrotic cytokines/adipokines in the epicardial adipose tissue adjacent to the pulmonary vein muscle sleeve site may work synergistically to promote atrial fibrillation.


Atrial Fibrillation , Tyrosine 3-Monooxygenase , Humans , Tyrosine 3-Monooxygenase/metabolism , Choline O-Acetyltransferase/metabolism , Atrial Fibrillation/surgery , Heart Atria , Pericardium/metabolism , Cytokines/metabolism , Fibrosis , Adipokines/metabolism , Adipose Tissue
11.
Breast Cancer Res ; 24(1): 91, 2022 12 19.
Article En | MEDLINE | ID: mdl-36536390

BACKGROUND: Childhood adiposity is inversely associated with young adult percent dense breast volume (%DBV) and absolute dense breast volume (ADBV), which could contribute to its protective effect for breast cancer later in life. The objective of this study was to identify metabolites in childhood serum that may mediate the inverse association between childhood adiposity and young adult breast density. METHODS: Longitudinal data from 182 female participants in the Dietary Intervention Study in Children (DISC) and the DISC 2006 (DISC06) Follow-Up Study were analyzed. Childhood adiposity was assessed by anthropometry at the DISC visit with serum available that occurred closest to menarche and expressed as a body mass index (BMI) z-score. Serum metabolites were measured by untargeted metabolomics using ultra-high-performance liquid chromatography-tandem mass spectrometry. %DBV and ADBV were measured by magnetic resonance imaging at the DISC06 visit when participants were 25-29 years old. Robust mixed effects linear regression was used to identify serum metabolites associated with childhood BMI z-scores and breast density, and the R package mediation was used to quantify mediation. RESULTS: Of the 115 metabolites associated with BMI z-scores (FDR < 0.20), 4 were significantly associated with %DBV and 6 with ADBV before, though not after, adjustment for multiple comparisons. Mediation analysis identified 2 unnamed metabolites, X-16576 and X-24588, as potential mediators of the inverse association between childhood adiposity and dense breast volume. X-16576 mediated 14% (95% confidence interval (CI) = 0.002, 0.46; P = 0.04) of the association of childhood adiposity with %DBV and 11% (95% CI = 0.01, 0.26; P = 0.02) of its association with ADBV. X-24588 also mediated 7% (95% CI = 0.001, 0.18; P = 0.05) of the association of childhood adiposity with ADBV. None of the other metabolites examined contributed to mediation of the childhood adiposity-%DBV association, though there was some support for contributions of lysine, valine and 7-methylguanine to mediation of the inverse association of childhood adiposity with ADBV. CONCLUSIONS: Additional large longitudinal studies are needed to identify metabolites and other biomarkers that mediate the inverse association of childhood adiposity with breast density and possibly breast cancer risk.


Breast Density , Breast Neoplasms , Child , Young Adult , Female , Humans , Adult , Adiposity , Follow-Up Studies , Mammography , Body Mass Index
12.
Elife ; 112022 Oct 18.
Article En | MEDLINE | ID: mdl-36255053

Previously we showed the generation of a protein trap library made with the gene-break transposon (GBT) in zebrafish (Danio rerio) that could be used to facilitate novel functional genome annotation towards understanding molecular underpinnings of human diseases (Ichino et al, 2020). Here, we report a significant application of this library for discovering essential genes for heart rhythm disorders such as sick sinus syndrome (SSS). SSS is a group of heart rhythm disorders caused by malfunction of the sinus node, the heart's primary pacemaker. Partially owing to its aging-associated phenotypic manifestation and low expressivity, molecular mechanisms of SSS remain difficult to decipher. From 609 GBT lines screened, we generated a collection of 35 zebrafish insertional cardiac (ZIC) mutants in which each mutant traps a gene with cardiac expression. We further employed electrocardiographic measurements to screen these 35 ZIC lines and identified three GBT mutants with SSS-like phenotypes. More detailed functional studies on one of the arrhythmogenic mutants, GBT411, in both zebrafish and mouse models unveiled Dnajb6 as a novel SSS causative gene with a unique expression pattern within the subpopulation of sinus node pacemaker cells that partially overlaps with the expression of hyperpolarization activated cyclic nucleotide gated channel 4 (HCN4), supporting heterogeneity of the cardiac pacemaker cells.


Sick Sinus Syndrome , Zebrafish , Mice , Animals , Humans , Sick Sinus Syndrome/genetics , Zebrafish/genetics , Zebrafish/metabolism , Sinoatrial Node/metabolism , Phenotype , Electrocardiography/adverse effects , Arrhythmias, Cardiac/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Nerve Tissue Proteins/metabolism , Molecular Chaperones/metabolism , HSP40 Heat-Shock Proteins/genetics
13.
Cells ; 11(17)2022 08 30.
Article En | MEDLINE | ID: mdl-36078112

Prostate cancer (PCa) relies in part on AR-signaling for disease development and progression. Earlier, we developed drug candidate galeterone, which advanced through phase 2-clinical trials in treating castration-resistant PCa (CRPC). Subsequently, we designed, synthesized, and evaluated next-generation galeterone-analogs including VNPP433-3ß which is potently efficacious against pre-clinical models of PCa. This study describes the mechanism of action of VNPP433-3ß that promotes degradation of full-length AR (fAR) and its splice variant AR-V7 besides depleting MNK1/2 in in vitro and in vivo CRPC models that stably overexpresses fAR. VNPP433-3ß directly engages AR within the cell and promotes proteasomal degradation of fAR and its splice variant AR-V7 by enhancing the interaction of AR with E3 ligases MDM2/CHIP but disrupting AR-HSP90 binding. Next, VNPP433-3ß decreases phosphorylation of 4EBP1 and abates binding of eIF4E and eIF4G to 5' cap of mRNA by depleting MNK1/2 with consequent depletion of phosphorylated eIF4E. Finally, RNA-seq demonstrates modulation of multiple pathways that synergistically contribute to PCa inhibition. Therefore, VNPP433-3ß exerts its antitumor effect by imposing 1) transcriptional regulation of AR and AR-responsive oncogenes 2) translational regulation by disrupting mRNA-5'cap-dependent translation initiation, 3) reducing AR half-life through enhanced proteasomal degradation in vitro and AR-overexpressing tumor xenografts in vivo.


Androgen Receptor Antagonists , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Eukaryotic Initiation Factor-4E/drug effects , Eukaryotic Initiation Factor-4E/metabolism , Intracellular Signaling Peptides and Proteins/drug effects , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Protein Isoforms/metabolism , Protein Serine-Threonine Kinases/drug effects , Receptors, Androgen/drug effects , Receptors, Androgen/metabolism , RNA, Messenger/therapeutic use
14.
BMC Bioinformatics ; 23(Suppl 6): 407, 2022 Sep 30.
Article En | MEDLINE | ID: mdl-36180861

BACKGROUND: To date, there are no effective treatments for most neurodegenerative diseases. Knowledge graphs can provide comprehensive and semantic representation for heterogeneous data, and have been successfully leveraged in many biomedical applications including drug repurposing. Our objective is to construct a knowledge graph from literature to study the relations between Alzheimer's disease (AD) and chemicals, drugs and dietary supplements in order to identify opportunities to prevent or delay neurodegenerative progression. We collected biomedical annotations and extracted their relations using SemRep via SemMedDB. We used both a BERT-based classifier and rule-based methods during data preprocessing to exclude noise while preserving most AD-related semantic triples. The 1,672,110 filtered triples were used to train with knowledge graph completion algorithms (i.e., TransE, DistMult, and ComplEx) to predict candidates that might be helpful for AD treatment or prevention. RESULTS: Among three knowledge graph completion models, TransE outperformed the other two (MR = 10.53, Hits@1 = 0.28). We leveraged the time-slicing technique to further evaluate the prediction results. We found supporting evidence for most highly ranked candidates predicted by our model which indicates that our approach can inform reliable new knowledge. CONCLUSION: This paper shows that our graph mining model can predict reliable new relationships between AD and other entities (i.e., dietary supplements, chemicals, and drugs). The knowledge graph constructed can facilitate data-driven knowledge discoveries and the generation of novel hypotheses.


Alzheimer Disease , Semantics , Alzheimer Disease/drug therapy , Drug Repositioning , Humans , Knowledge , Pattern Recognition, Automated
15.
Mol Carcinog ; 61(7): 643-654, 2022 07.
Article En | MEDLINE | ID: mdl-35512605

Cancer stem cells (CSCs) virtually present in all tumors albeit in small numbers are primarily responsible for driving cancer progression, metastasis, drug resistance, and recurrence. Prostate cancer (PCa) is the second most frequent cancer in men worldwide, and castration resistant prostate cancer (CRPC) remains a major challenge despite the tremendous advancements in medicine. Currently, none of the available treatment options are effective in treating CRPC. We earlier reported that VNPP433-3ß, the lead next-generation galeterone analog is effective in treating preclinical in vivo models of CRPC. In this study using RNA-seq, cytological, and biochemical methods, we report that VNPP433-3ß inhibits prostate CSCs by targeting key pathways critical to stemness and epithelial-mesenchymal transition. VNPP433-3ß inhibits CSCs in PCa, presumably by degrading the androgen receptor (AR) thereby decreasing the AR-mediated transcription of several stem cell markers including BMI1 and KLF4. Transcriptome analyses by RNA-seq, Ingenuity Pathway Analysis, and Gene Set Enrichment Analysis demonstrate that VNPP433-3ß inhibits transcription of several genes and functional pathways critical to the prostate CSCs thereby inhibiting CSCs in PCa besides targeting the bulk of the tumor.


Prostatic Neoplasms, Castration-Resistant , Androstadienes , Benzimidazoles , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Gene Expression Profiling , Humans , Male , Neoplastic Stem Cells/pathology , Prostate/pathology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
17.
Front Cell Dev Biol ; 10: 790410, 2022.
Article En | MEDLINE | ID: mdl-35252171

Triple negative breast cancer (TNBC) follows a non-random pattern of metastasis to the bone and brain tissue. Prior work has found that brain-seeking breast tumor cells display altered proteomic profiles, leading to alterations in pathways related to cell signaling, cell cycle, metabolism, and extracellular matrix remodeling. Given the unique microenvironmental characteristics of brain and bone tissue, we hypothesized that brain- or bone-seeking TNBC cells may have altered morphologic or migratory phenotypes from each other, or from the parental TNBC cells, as a function of the biochemical or mechanical microenvironment. In this study, we utilized TNBC cells (MDA-MB-231) that were conditioned to metastasize solely to brain (MDA-BR) or bone (MDA-BO) tissue. We quantified characteristics such as cell morphology, migration, and stiffness in response to cues that partially mimic their final metastatic niche. We have shown that MDA-BO cells have a distinct protrusive morphology not found in MDA-P or MDA-BR. Further, MDA-BO cells migrate over a larger area when on a collagen I (abundant in bone tissue) substrate when compared to fibronectin (abundant in brain tissue). However, migration in highly confined environments was similar across the cell types. Modest differences were found in the stiffness of MDA-BR and MDA-BO cells plated on collagen I vs. fibronectin-coated surfaces. Lastly, MDA-BO cells were found to have larger focal adhesion area and density in comparison with the other two cell types. These results initiate a quantitative profile of mechanobiological phenotypes in TNBC, with future impacts aiming to help predict metastatic propensities to organ-specific sites in a clinical setting.

18.
Nat Commun ; 13(1): 1297, 2022 Mar 11.
Article En | MEDLINE | ID: mdl-35277497

Engineering the formulation of non-aqueous liquid electrolytes is a viable strategy to produce high-energy lithium metal batteries. However, when the lithium metal anode is combined with a Ni-rich layered cathode, the (electro)chemical stability of both electrodes could be compromised. To circumvent this issue, we report a combination of aluminum ethoxide (0.4 wt.%) and fluoroethylene carbonate (5 vol.%) as additives in a conventional LiPF6-containing carbonate-based electrolyte solution. This electrolyte formulation enables the formation of mechanically robust and ionically conductive interphases on both electrodes' surfaces. In particular, the alumina formed at the interphases prevents the formation of dendritic structures on the lithium metal anode and mitigate the stress-induced cracking and phase transformation in the Ni-rich layered cathode. By coupling a thin (i.e., about 40 µm) lithium metal anode with a high-loading (i.e., 21.5 mg cm-2) LiNi0.8Co0.1Mn0.1O2-based cathode in coin cell configuration and lean electrolyte conditions, the engineered electrolyte allows a specific discharge capacity retention of 80.3% after 130 cycles at 60 mA g-1 and 30 °C which results in calculated specific cell energy of about 350 Wh kg-1.

19.
Anticancer Agents Med Chem ; 22(2): 239-253, 2022.
Article En | MEDLINE | ID: mdl-34080968

BACKGROUND: The clinical outcomes of patients with Acute Myeloid Leukemia (AML) remain unsatisfactory. Therefore the development of more efficacious and better-tolerated therapy for AML is critical. We have previously reported anti-leukemic activity of synthetic halohydroxyl dimeric naphthoquinones (BiQ) and aziridinyl BiQ. OBJECTIVE: This study aimed to improve the potency and bioavailability of BiQ compounds and investigate antileukemic activity of the lead compound in vitro and a human AML xenograft mouse model. METHODS: We designed, synthesized, and performed structure-activity relationships of several rationally designed BiQ analogues with amino alcohol functional groups on the naphthoquinone core rings. The compounds were screened for anti-leukemic activity and the mechanism as well as in vivo tolerability and efficacy of our lead compound was investigated. RESULTS: We report that a dimeric naphthoquinone (designated BaltBiQ) demonstrated potent nanomolar anti-leukemic activity in AML cell lines. BaltBiQ treatment resulted in the generation of reactive oxygen species, induction of DNA damage, and inhibition of indoleamine dioxygenase 1. Although BaltBiQ was tolerated well in vivo, it did not significantly improve survival as a single agent, but in combination with the specific Bcl-2 inhibitor, Venetoclax, tumor growth was significantly inhibited compared to untreated mice. CONCLUSION: We synthesized a novel amino alcohol dimeric naphthoquinone, investigated its main mechanisms of action, reported its in vitro anti-AML cytotoxic activity, and showed its in vivo promising activity combined with a clinically available Bcl-2 inhibitor in a patient-derived xenograft model of AML.


Amino Alcohols/pharmacology , Antineoplastic Agents/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Naphthoquinones/pharmacology , Amino Alcohols/chemistry , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Leukemia, Myeloid, Acute/pathology , Mice , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Naphthoquinones/chemistry , Structure-Activity Relationship
20.
Front Pharmacol ; 12: 743411, 2021.
Article En | MEDLINE | ID: mdl-34899297

Alpelisib, an oral selective and small-molecule phosphoinositide 3-kinase inhibitor, was lately approved in the United States to treat breast cancer. A sensitive method to quantify alpelisib levels in rat plasma on the basis of ultra-performance liquid chromatography-tandem mass spectrometry technique was established and validated, which was successfully employed to explore the effects of CYP3A4 inhibitors on alpelisib pharmacokinetics in rats. A C18 column named Acquity UPLC BEH C18 was applied to achieve the separation of alpelisib and internal standard duvelisib after protein precipitation with acetonitrile. The mobile phase in this study had two components, namely, acetonitrile and water having 0.1% formic acid, and a program with gradient elution method was used at a flow rate of 0.40 ml/min. Mass spectrometry in a positive multiple reaction monitoring mode was operated. In the scope of 1-5,000 ng/ml, this assay had excellent linearity. Our newly developed assay was verified in all aspects of bioanalytical method validation, involving lower limit of quantification, selectivity, accuracy and precision, calibration curve, extraction recovery, matrix effect, and stability. Then, this assay was used to detect the plasma levels of alpelisib from a drug-drug interaction investigation, where ketoconazole remarkably increased the plasma concentration of alpelisib and changed alpelisib pharmacokinetics more than itraconazole. This study will help better understand the pharmacokinetic properties of alpelisib, and further clinical studies should be done to confirm this result in patients.

...