Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 479: 135514, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39243542

RESUMEN

The extensive use of antibiotics has created an urgent need to address antibiotic wastewater treatment, posing significant challenges for environmental protection and public health. Recent advances in the efficacy and mechanisms of conductive materials (CMs) for enhancing the anaerobic biological treatment of antibiotic pharmaceutical wastewater are reviewed. For the first time, the focus is on the various application forms of iron-based and carbon-based CMs in strengthening the anaerobic methanogenic system. This includes the use of single CMs such as zero-valent iron (ZVI), magnetite, biochar (BC), activated carbon (AC), and graphene (GP), as well as iron-based and carbon-based composite CMs with diverse structures. These structures include mixed, surface-loaded, and core-shell combinations, reflecting the development of CMs. Iron-based and carbon-based CMs promote the rapid removal of antibiotics through adsorption and enhanced biodegradation. They also mitigate the inhibitory effects of toxic pollutants on microbial activity and reduce the expression of antibiotic resistance genes (ARGs). Additionally, as effective electron carriers, these CMs enrich microorganisms with direct interspecies electron transfer (DIET) functions, accelerate interspecies electron transfer, and facilitate the conversion of organic matter into methane. Finally, this review proposes the use of advanced molecular detection technologies to clarify microbial ecology and metabolic mechanisms, along with microscopic characterization techniques for the modification of CMs. These methods can provide more direct evidence to analyze the mechanisms underlying the cooperative anaerobic treatment of refractory organic wastewater by CMs and microorganisms.

2.
Cancer Lett ; 599: 217147, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39094826

RESUMEN

The dysregulation of circadian rhythm oscillation is a prominent feature of various solid tumors. Thus, clarifying the molecular mechanisms that maintain the circadian clock is important. In the present study, we revealed that the transcription factor forkhead box FOXK1 functions as an oncogene in breast cancer. We showed that FOXK1 recruits multiple transcription corepressor complexes, including NCoR/SMRT, SIN3A, NuRD, and REST/CoREST. Among them, the FOXK1/NCoR/SIN3A complex transcriptionally regulates a cohort of genes, including CLOCK, PER2, and CRY2, that are critically involved in the circadian rhythm. The complex promoted the proliferation of breast cancer cells by disturbing the circadian rhythm oscillation. Notably, the nuclear expression of FOXK1 was positively correlated with tumor grade. Insulin resistance gradually became more severe with tumor progression and was accompanied by the increased expression of OGT, which caused the nuclear translocation and increased expression of FOXK1. Additionally, we found that metformin downregulates FOXK1 and exports it from the nucleus, while HDAC inhibitors (HDACi) inhibit the FOXK1-related enzymatic activity. Combined treatment enhanced the expression of circadian clock genes through the regulation of FOXK1, thereby exerting an antitumor effect, indicating that highly nuclear FOXK1-expressing breast cancers are potential candidates for the combined application of metformin and HDACi.


Asunto(s)
Neoplasias de la Mama , Ritmo Circadiano , Factores de Transcripción Forkhead , Regulación Neoplásica de la Expresión Génica , Resistencia a la Insulina , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Animales , Ritmo Circadiano/genética , Criptocromos/genética , Criptocromos/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Proliferación Celular , Línea Celular Tumoral , Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 1 de Receptor Nuclear/genética , Inhibidores de Histona Desacetilasas/farmacología , Ratones , Carcinogénesis/genética , Células MCF-7 , Ratones Desnudos
3.
Water Res ; 263: 122121, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39094200

RESUMEN

Magnetite (Fe3O4) is extensively applied to enhance efficacy of anaerobic biological treatment systems designed for refractory wastewater. However, the interaction between magnetite, organic pollutants and microorganisms in digestion solution is constrained by magnetic attraction. To overcome this limitation and prevent magnetite aggregation, the core-shell composite materials with carbon outer layer enveloping magnetite core particles (Fe3O4@C) were developed. The impact of Fe3O4@C with varying Fe3O4 mass ratios on the anaerobic methanogenesis capability in the treatment of chloramphenicol (CAP) wastewater was investigated. Experimental results demonstrated that Fe3O4@C not only enhanced chemical oxygen demand (COD) removal efficiency and biogas production by 2.42-13.18% and by 7.53%-23.25%, respectively, but also reduced the inhibition of microbial activity caused by toxic substances and the secretion of extracellular polymeric substances (EPS) by microorganisms responding to adverse environments. The reinforcing capability of Fe3O4@C increased with the rise in Fe3O4 content. Furthermore, High-throughput pyrosequencing illustrated that Fe3O4@C enhanced the relative abundance of Methanobacterium, a hydrogen-utilizing methanogen capable of participating in direct interspecies electron transfer (DIET), by 5%. Metagenomic analysis indicated that Fe3O4@C improved the decomposition of complex organics into simpler compounds by elevating functional genes encoding key enzymes associated with organic matter metabolism, acetogenesis, and hydrogenophilic methanogenesis pathways. These findings suggest that Fe3O4@C have the potential to strengthen both the hydrogenophilic methanogenesis and DIET processes. This insight offers a novel perspective on the anaerobic bioaugmentation of high-concentration refractory organic wastewater.


Asunto(s)
Cloranfenicol , Óxido Ferrosoférrico , Metano , Aguas Residuales , Aguas Residuales/química , Óxido Ferrosoférrico/química , Anaerobiosis , Metano/metabolismo , Carbono , Eliminación de Residuos Líquidos/métodos , Análisis de la Demanda Biológica de Oxígeno
4.
J Hazard Mater ; 474: 134701, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38824774

RESUMEN

Coking wastewater (CWW) treatment is difficult due to its complex composition and high biological toxicity. Iron-carbon mediators was used to enhance the treatment of CWW through iron-carbon microelectrolysis (ICME). The results indicated that the removal rate of COD and phenolic compounds were enhanced by 24.1 % and 23.5 %, while biogas production and methane content were promoted by 50 % and 7 %. Microbial community analysis indicated that iron-carbon mediators had a transformative impact on the reactor's performance and dependability by enriching microorganisms involved in direct and indirect electron transfer, such as Anaerolineae and Methanothrix. The mediator also produced noteworthy gains in LB-EPS and TB-EPS, increasing by roughly 109.3 % and 211.6 %, respectively. PICRISt analysis demonstrated that iron-carbon mediators effectively augment the abundance of functional genes associated with metabolism, Citrate cycle, and EET pathway. This study provides a new approach for CWW treatment.


Asunto(s)
Reactores Biológicos , Carbono , Coque , Hierro , Aguas Residuales , Aguas Residuales/química , Hierro/metabolismo , Hierro/química , Carbono/química , Carbono/metabolismo , Metano/metabolismo , Eliminación de Residuos Líquidos/métodos , Biocombustibles , Análisis de la Demanda Biológica de Oxígeno , Residuos Industriales , Contaminantes Químicos del Agua/metabolismo , Fenoles/metabolismo , Bacterias/metabolismo , Bacterias/genética
5.
Commun Biol ; 7(1): 613, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773248

RESUMEN

Understanding how to increase soybean yield is crucial for global food security. The genetic and epigenetic factors influencing seed size, a major crop yield determinant, are not fully understood. We explore the role of DNA demethylase GmDMEa in soybean seed size. Our research indicates that GmDMEa negatively correlates with soybean seed size. Using CRISPR-Cas9, we edited GmDMEa in the Dongnong soybean cultivar, known for small seeds. Modified plants had larger seeds and greater yields without altering plant architecture or seed nutrition. GmDMEa preferentially demethylates AT-rich transposable elements, thus activating genes and transcription factors associated with the abscisic acid pathway, which typically decreases seed size. Chromosomal substitution lines confirm that these modifications are inheritable, suggesting a stable epigenetic method to boost seed size in future breeding. Our findings provide insights into epigenetic seed size control and suggest a strategy for improving crop yields through the epigenetic regulation of crucial genes. This work implies that targeted epigenetic modification has practical agricultural applications, potentially enhancing food production without compromising crop quality.


Asunto(s)
Metilación de ADN , Elementos Transponibles de ADN , Glycine max , Semillas , Glycine max/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Elementos Transponibles de ADN/genética , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética
6.
Phys Rev Lett ; 132(3): 033201, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38307062

RESUMEN

Recent advances in laser technology have enabled tremendous progress in light-induced molecular reactions, at the heart of which the breaking and formation of chemical bonds are located. Such progress has been greatly facilitated by the development of an accurate quantum-mechanical simulation method, which, however, does not necessarily accompany clear dynamical scenarios and is rather computationally heavy. Here, we develop a wave-packet surface propagation (WASP) approach to describe the molecular bond-breaking dynamics from a hybrid quantum-classical perspective. Via the introduction of quantum elements including state transitions and phase accumulations to the Newtonian propagation of the nuclear wave packet, the WASP approach naturally comes with intuitive physical scenarios and accuracies. It is carefully benchmarked with the H_{2}^{+} molecule and is shown to be capable of precisely reproducing experimental observations. The WASP method is promising for the intuitive visualization of light-induced molecular dynamics and is straightforward extensible towards complex molecules.

7.
Front Immunol ; 15: 1328145, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38298192

RESUMEN

Despite the clear benefits demonstrated by immunotherapy, there is still an inevitable off-target effect resulting in serious adverse immune reactions. In recent years, the research and development of Drug Delivery System (DDS) has received increased prominence. In decades of development, DDS has demonstrated the ability to deliver drugs in a precisely targeted manner to mitigate side effects and has the advantages of flexible control of drug release, improved pharmacokinetics, and drug distribution. Therefore, we consider that combining cancer immunotherapy with DDS can enhance the anti-tumor ability. In this paper, we provide an overview of the latest drug delivery strategies in cancer immunotherapy and briefly introduce the characteristics of DDS based on nano-carriers (liposomes, polymer nano-micelles, mesoporous silica, extracellular vesicles, etc.) and coupling technology (ADCs, PDCs and targeted protein degradation). Our aim is to show readers a variety of drug delivery platforms under different immune mechanisms, and analyze their advantages and limitations, to provide more superior and accurate targeting strategies for cancer immunotherapy.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Portadores de Fármacos/uso terapéutico , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Inmunoterapia/métodos
8.
Animal Model Exp Med ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238876

RESUMEN

BACKGROUND: Globally, breast cancer constitutes the predominant malignancy in women. Abnormal regulation of epigenetic factors plays a key role in the development of tumors. Anti-apoptosis is a characteristic of tumor cells. Therefore, exploring and identifying relevant epigenetic factors that regulate the apoptosis of tumor cells is the foundation for clarifying the pathogenesis of tumors and achieving precision antitumor therapy. METHOD: This study focused on exploring the epigenetic mechanism of FOXK1 in the development of estrogen receptor-positive (ER+ ) breast cancer. We used overexpressing FLAG-FOXK1 MCF-7 cells to perform silver staining mass spectrometry analysis and conducted Co-IP experiments to verify the interactions. ChIP-seq was conducted on MCF-7 cells to examine FOXK1's binding across the genome and its transcriptional target sites. To validate the ChIP-seq results, qChIP, western blotting, and quantitative polymerase chain reaction (qPCR) were performed. Through TUNEL assay, cell counting assay, colony formation assay, and the mouse xenograft models, the effect of FOXK1 on breast cancer progression was detected. Finally, by analyzing online databases, the correlation between FOXK1 and the survival of breast cancer patients was examined. RESULTS: FOXK1 interacts with the REST/CoREST transcriptional corepression complex to transcriptionally inhibit target genes representing the apoptotic pathway. Abnormally high expression of FOXK1 prevents the apoptosis of ER+ breast cancer cells in vitro and promotes ER+ breast tumor progression in vivo. Furthermore, the expression of FOXK1 is negatively correlated with the survival of ER+ breast cancer patients. CONCLUSION: FOXK1 promotes ER+ breast carcinogenesis through anti-apoptosis and acts as a potential target for ER+ breast cancer treatment.

9.
Phys Rev Lett ; 131(18): 183201, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37977615

RESUMEN

We build a model to elucidate the high harmonic generation in combined EUV and midinfrared laser fields by embodying the spin-resolved three-electron dynamics. The EUV pulse ionizes an inner-shell electron, and the midinfrared laser drives the photoelectron and steers the electron-ion rescattering. Depending on the spin of the photoelectron, the residual ion including two bound electrons can be either in a single spin configuration or in a coherent superposition of different spin configurations. In the latter case, the two electrons in the ion swap their orbits, leading to a deep valley in the harmonic spectrum. The model results agree with the time-dependent Schrödinger equation simulations including three active electrons. The intriguing picture explored in this work is fundamentally distinguished from all reported scenarios relied on spin-orbit coupling, but originates from the exchanges asymmetry of two-electron wave functions.

10.
J Hazard Mater ; 460: 132389, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37666169

RESUMEN

ZVI@C-MP is a novel composite particle consisting of zero-valent iron (ZVI) enclosed within a carbon shell. The purpose of this composite material is to enhance the anaerobic treatment of wastewater containing chloramphenicol (CAP). This approach aims to address the initial challenge of excessive corrosion experienced by ZVI, followed by its subsequent passivation and inactivation. ZVI@C-MP was synthesized through a hydrothermal process and calcination, with montmorillonite as binder, it exhibits stability, iron-carbon microelectrolysis (ICME) properties, and strong adsorption for CAP. Its ICME actions include releasing iron ions (0.70 mg/L) and COD (11.3 mg/L), generating hydrogen (3.82%), and raising the pH from 6.30 to 7.71. With minimal structural changes, it achieved release equilibrium. ZVI@C-MP boasts high removal efficiency of CAP (98.96%) by adsorption, attributed to surface characteristics (surface area: 167.985 m2/g; pore volume: 0.248 cm3/g). The addition of ZVI@C-MP increases COD removal (10.16%), methane production (72.86%), and reduces extracellular polymeric substances (EPS) from 70.58 to 52.72 mg/g MLVSS. It reduces microbial by-products and toxic effects, enhancing CAP biodegradation and microbial metabolic activity. ZVI@C-MP's electrical conductivity and biocompatibility bolster functional flora for interspecies electron transfer. It's a novel approach to antibiotic wastewater treatment.


Asunto(s)
Bentonita , Cloranfenicol , Aguas Residuales , Anaerobiosis , Antibacterianos , Carbono , Hierro
11.
Sci Total Environ ; 904: 166796, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37666346

RESUMEN

Anaerobic treatment of chloramphenicol wastewater holds significant promise due to its potential for bioenergy generation. However, the high concentration of organic matter and residual toxic substances in the wastewater severely inhibit the activity of microorganisms. In this study, a three-dimensional graphene aerogel (GA), as a conductive material with high specific surface area (114.942 m2 g-1) and pore volume (0.352 cm3 g-1), was synthesized and its role in the efficiency and related mechanism for EGSB reactor to treat chloramphenicol wastewater was verified. The results indicated that synergy effects of GA for Chemical Oxygen Demand (COD) removal (increased by 8.17 %), chloramphenicol (CAP) removal (increased by 4.43 %) and methane production (increased by 70.29 %). Furthermore, GA increased the average particle size of anaerobic granular sludge (AGS) and promoted AGS to secrete more redox active substances. Microbial community analysis revealed that GA increased the relative abundance of functional bacteria and archaea, specifically Syntrophomonas, Geobacter, Methanothrix, and Methanolinea. These microbial species can participate in direct interspecific electron transfer (DIET). This research serves as a theoretical foundation for the application of GA in mitigating the toxic impact of refractory organic substances, such as antibiotics, on microorganisms during anaerobic treatment processes.


Asunto(s)
Grafito , Aguas Residuales , Grafito/toxicidad , Eliminación de Residuos Líquidos/métodos , Cloranfenicol/toxicidad , Anaerobiosis , Reactores Biológicos/microbiología , Aguas del Alcantarillado/microbiología , Metano
12.
Phys Rev Lett ; 130(14): 143203, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37084425

RESUMEN

We demonstrate that dissociative ionization of H_{2} can be fully manipulated in an angle-time-resolved fashion, employing a polarization-skewed (PS) laser pulse in which the polarization vector rotates. The leading and falling edges of the PS laser pulse, characterized by unfolded field polarization, trigger, sequentially, parallel and perpendicular transitions of stretching H_{2} molecules, respectively. These transitions result in counterintuitive proton ejections that deviate significantly from the laser polarization directions. Our findings demonstrate that the reaction pathways can be controlled through fine-tuning the time-dependent polarization of the PS laser pulse. The experimental results are well reproduced using an intuitive wave-packet surface propagation simulation method. This research highlights the potential of PS laser pulses as powerful tweezers to resolve and manipulate complex laser-molecule interactions.

13.
Phys Rev Lett ; 130(11): 113201, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-37001077

RESUMEN

We report the ionization reduction of atoms in two-color femtosecond laser fields in this joint theoretical-experimental study. For the multiphoton ionization of atoms using a 400 nm laser pulse, the ionization probability is reduced if another relatively weak 800 nm laser pulse is overlapped. Such ionization reduction consistently occurs regardless of the relative phase between the two pulses. The time-dependent Schrödinger equation simulation results indicate that with the assisted 800 nm photons the electron can be launched to Rydberg states with large angular quantum numbers, which stand off the nuclei and thus are hard to be freed in the multiphoton regime. This mechanism works for hydrogen, helium, and probably some other atoms if two-color laser fields are properly tuned.

14.
Light Sci Appl ; 12(1): 35, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732490

RESUMEN

Rabi oscillation is an elementary laser-driven physical process in atoms and artificial atoms from solid-state systems, while it is rarely demonstrated in molecules. Here, we investigate the bond-length-dependent Rabi oscillations with varying Rabi frequencies in strong-laser-field dissociation of H2+. The coupling of the bond stretching and Rabi oscillations makes the nuclei gain different kinetic energies while the electron is alternatively absorbing and emitting photons. The resulting proton kinetic energy spectra show rich structures beyond the prediction of the Floquet theorem and the well-accepted resonant one-photon dissociation pathway. Our study shows that the laser-driven Rabi oscillations accompanied by nuclear motions are essential to understanding the bond-breaking mechanism and provide a time-resolved perspective to manipulate rich dynamics of the strong-laser-field dissociation of molecules.

15.
Bioresour Technol ; 374: 128737, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36781146

RESUMEN

Magnetic granular activated carbon (MGAC), a nano-Fe3O4 modified granular activated carbon, was used as the carrier in an anaerobic fluidized-bed membrane bioreactor (AFMBR) to promote domestic wastewater treatment efficiency and alleviate membrane biofouling. Chemical oxygen demand (COD) removal reached 89 ± 2.6% with the effluent concentration of 20 ± 3.9 mg/L in the MGAC-AFMBR, while it was 28 ± 5.2 mg/L in AFMBR at hydraulic retention time (HRT) of 4 h. Total nitrogen (TN) removal was also enhanced by 4.0% with MGAC. An increased proportion of Chloroflexi and Bacteroidetes in the sludge may be responsible for improved treatment performance. MGAC reduced the protein and polysaccharide content in extracellular polymeric substances (EPS) by 9.8% and 8.1%, respectively. Besides, Bacteroidetes and Proteobacteria abundance decreased by 4.0% and 16.6% in the membrane cake layer with MGAC addition. Therefore, the high-quality effluent and low membrane biofouling of AFMBR was sustained by MGAC.


Asunto(s)
Aguas Residuales , Purificación del Agua , Eliminación de Residuos Líquidos , Carbón Orgánico , Anaerobiosis , Membranas Artificiales , Aguas del Alcantarillado/microbiología , Reactores Biológicos/microbiología
16.
J Cosmet Dermatol ; 22(3): 1128-1133, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36343155

RESUMEN

BACKGROUND: Eruptive syringomas is a rare variant of syringoma, which is a benign adenoma differentiated from the terminal ducts of the eccrine glands. Nowadays, it's widely valued because of obvious skin lesions, large scope of influence, and high misdiagnosis rate. OBJECTIVES: We aim to explore the clinical features of eruptive syringomas and the current research progress. MATERIALS AND METHODS: We firstly summarized the clinical features of 90 cases of eruptive syringomas. Then, the chi-square test was used to analyze the relationship between the onset site of eruptive syringomas and age, as well as gender. Finally, we briefly reviewed the previous literature. RESULTS: During 12 years, 90 cases of eruptive syringomas were diagnosed in our hospital, including 28 males (31.1%) and 62 females (68.9%). The average diagnosed age was 28.8. Patients from 20 to 40 years old is 63 (70%), which is the most. 60 (66.7%) patients had the course for more than 1 year. Among onset sites, the neck, chest, and abdomen were in the top three. The chi-square test showed that there were no significant differences in the onset sites of patients aged ≤ 20 and >20 years old (p-value = 0.181), as well as male and female (p-value = 0.363). CONCLUSION: We found that more female than male was affected, and the most common onset sites were the neck, chest, and abdomen. Neither age nor gender was significantly associated with onset site distribution. Our study provides some data support for the research of eruptive syringomas.


Asunto(s)
Neoplasias de las Glándulas Sudoríparas , Siringoma , Adulto , Femenino , Humanos , Masculino , Adulto Joven , Diagnóstico Diferencial , Cuello/patología , Siringoma/diagnóstico , Siringoma/etiología , Siringoma/patología , Tórax/patología
17.
Sci Total Environ ; 854: 158712, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36099942

RESUMEN

Though aerobic composting is commonly used in kitchen waste (KW) disposal, the high-oil and high-salt characteristics of KW could affect composting efficiency and lead to the land using risk of produced fertilizer. The impact of hydrothermal pretreatment (HTP) and addition of compound microbial agent (CMA) on compost maturity, greenhouse gas (GHGs) emissions and bacterial community during the kitchen waste composting were evaluated in the present work. Results indicated that N2O, CH4 and CO2 emissions from treatment by HTP and CMA addition were reduced by 82.72%, 13.77% and 20.78 %, respectively, comparing with the control (without HTP and without CMA addition). The seed germination index (GI) value of the HTP and CMA addition treatment was 1.03 and had the highest maturity in all treatments. Furthermore, the bacterial community analysis indicated that CMA inoculation could increase the relative abundance of genus Bacillus at the thermophilic stage of composting to accelerate organic biodegradation. This work provided important insight into mitigating GHGs emissions and improving compost quality in kitchen waste composting.


Asunto(s)
Compostaje , Gases de Efecto Invernadero , Gases/análisis , Compostaje/métodos , Suelo
18.
Sci Total Environ ; 862: 160657, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36464058

RESUMEN

Present study investigated the effects of hydrothermal pretreatment (HTP) and addition of compound microbial agent (CMA) on humification, odour generation and metabolism functions of bacterial communities during composting of kitchen waste (KW). Surprisingly, HTP and CMA addition treatment could promote the humification of compost and the control of odour units in contrast to the control (without HTP and CMA addition). The humic acid to fulvic acid ratio of end compost increase by 187.30 %, while humification index (HIX) increased by 18.87 %. 3D-EEM fluorescence spectroscopy of dissolved organic matter (DOM) demonstrated that it facilitated the synthesis of humified compounds and the decomposition of biodegradable compounds. Moreover, the SUVA254, SUVA280 and E253/E203 increased by 118.6 %, 115.25 % and 42.11 % after HTP and CMA addition indicating an increase in aromatic carbon abundance. VFAs had the higher degradation rate (84.91 %) than other treatments (57.46-77.72 %). Meanwhile, the main contributor to the malodorous odour was isovaleric acid, followed by butyric acid and acetic acid during composting. Mantel test indicated that the humification degree was significantly influenced by environmental parameters (temperature, pH, etc.) and metabolic products (HA, DOC and VFAs). Metagenomic analysis indicated that the biodegradation processes at the thermophilic stage were controlled mainly through genes involved in microbial metabolism. HTP and CMA addition was an eco-friendly and efficient strategy to reduce odour emission and improve the compost quality.


Asunto(s)
Compostaje , Suelo , Suelo/química , Odorantes/prevención & control , Sustancias Húmicas/análisis , Espectrometría de Fluorescencia
19.
J Biol Chem ; 299(1): 102812, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36539038

RESUMEN

CXXC5, a member of the CXXC family of zinc-finger proteins, is associated with numerous pathological processes. However, the pathophysiological function of CXXC5 has not been clearly established. Herein, we found that CXXC5 interacts with the CRL4B and NuRD complexes. Screening of transcriptional targets downstream of the CXXC5-CRL4B-NuRD complex by next-generation sequencing (chromatin immunoprecipitation sequencing) revealed that the complex regulates the transcriptional repression process of a cohort of genes, including TSC1 (tuberous sclerosis complex subunit 1), which play important roles in cell growth and mammalian target of rapamycin signaling pathway regulation, and whose abnormal regulation results in the activation of programmed cell death-ligand protein 1 (PD-L1). Intriguingly, CXXC5 expression increased after stimulation with vitamin B2 but decreased after vitamin D treatment. We also found that the CXXC5-CRL4B-NuRD complex promotes the proliferation of tumor cells in vitro and accelerates the growth of breast cancer in vivo. The expression of CXXC5, CUL4B, and MTA1 increased during the occurrence and development of breast cancer, and correspondingly, TSC1 expression decreased. Meanwhile, a high expression of CXXC5 was positively correlated with the histological grade of high malignancy and poor survival of patients. In conclusion, our study revealed that CXXC5-mediated TSC1 suppression activates the mammalian target of rapamycin pathway, reduces autophagic cell death, induces PD-L1-mediated immune suppression, and results in tumor development, shedding light on the mechanism of the pathophysiological function of CXXC5.


Asunto(s)
Neoplasias de la Mama , Carcinogénesis , Serina-Treonina Quinasas TOR , Dedos de Zinc , Femenino , Humanos , Antígeno B7-H1 , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas Cullin , Proteínas de Unión al ADN/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Transactivadores
20.
Front Oncol ; 13: 1327147, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38486931

RESUMEN

Background: Hepatocellular carcinoma (HCC) is a complex malignancy, and precise prognosis assessment is vital for personalized treatment decisions. Objective: This study aimed to develop a multi-level prognostic risk model for HCC, offering individualized prognosis assessment and treatment guidance. Methods: By utilizing data from The Cancer Genome Atlas (TCGA) and the Surveillance, Epidemiology, and End Results (SEER) database, we performed differential gene expression analysis to identify genes associated with survival in HCC patients. The HCC Differential Gene Prognostic Model (HCC-DGPM) was developed through multivariate Cox regression. Clinical indicators were incorporated into the HCC-DGPM using Cox regression, leading to the creation of the HCC Multilevel Prognostic Model (HCC-MLPM). Immune function was evaluated using single-sample Gene Set Enrichment Analysis (ssGSEA), and immune cell infiltration was assessed. Patient responsiveness to immunotherapy was evaluated using the Immunophenoscore (IPS). Clinical drug responsiveness was investigated using drug-related information from the TCGA database. Cox regression, Kaplan-Meier analysis, and trend association tests were conducted. Results: Seven differentially expressed genes from the TCGA database were used to construct the HCC-DGPM. Additionally, four clinical indicators associated with survival were identified from the SEER database for model adjustment. The adjusted HCC-MLPM showed significantly improved discriminative capacity (AUC=0.819 vs. 0.724). External validation involving 153 HCC patients from the International Cancer Genome Consortium (ICGC) database verified the performance of the HCC-MLPM (AUC=0.776). Significantly, the HCC-MLPM exhibited predictive capacity for patient response to immunotherapy and clinical drug efficacy (P < 0.05). Conclusion: This study offers comprehensive insights into HCC prognosis and develops predictive models to enhance patient outcomes. The evaluation of immune function, immune cell infiltration, and clinical drug responsiveness enhances our comprehension and management of HCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA