Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Zhen Ci Yan Jiu ; 49(5): 480-486, 2024 May 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38764119

RESUMEN

OBJECTIVES: To observe the activation state and neuronal types of somatosensory cortex and the primary motor cortex induced by electroacupuncture (EA) stimulation of "Sibai" (ST2) and "Quanliao" (SI18) acupoints in mice. METHODS: Male C57BL/6J mice were randomly divided into blank control and EA groups, with 6 mice in each group. Rats of the EA group received EA stimulation (2 Hz, 0.6 mA) at ST2 and SI18 for 30 minutes. Samples were collected after EA intervention, and immunofluorescence staining was performed to quantify the expression of the c-Fos gene (proportion of c-Fos positive cells) in the somatosensory cortex and primary motor cortex. The co-labelled cells of calcium/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ) and gamma-aminobutyric acid (GABA) in the somatosensory cortex and primary motor cortex were observed and counted by using microscope after immunofluorescence staining. Another 10 mice were used to detect the calcium activity of excitatory neurons in the somatosensory cortex and primary motor cortex by fiber photometry. RESULTS: In comparison with the blank control group, the number of c-Fos positive cells, and the proportion of c-Fos and CaMKⅡ co-labelled cells in both the somatosensory cortex and primary motor cortex were significantly increased after EA stimulation (P<0.05). No significant changes were found in the proportion of c-Fos and GABA co-labeled cells in both the somatosensory cortex and primary motor cortex after EA. Results of fiber optic calcium imaging technology showed that the spontaneous calcium activity of excitatory neurons in both somatosensory cortex and primary motor cortex were obviously increased during EA compared with that before EA (P<0.01), and strikingly reduced after cessation of EA compared with that during EA (P<0.05). CONCLUSIONS: Under physiological conditions, EA of ST2 and SI18 can effectively activate excitatory neurons in the somatosensory cortex and primary motor cortex.


Asunto(s)
Puntos de Acupuntura , Electroacupuntura , Ratones Endogámicos C57BL , Neuronas , Animales , Masculino , Ratones , Neuronas/metabolismo , Corteza Sensoriomotora/metabolismo , Humanos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Corteza Motora/metabolismo , Corteza Somatosensorial/metabolismo
2.
Adv Mater ; : e2406359, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38759156

RESUMEN

Lithium metal batteries (LMBs) must have both long cycle life and calendar life to be commercially viable. However, "trial and error" methodologies remain prevalent in contemporary research endeavors to identify favorable electrolytes. Here, a guiding principle for the selection of solvents for LMBs is proposed, which aims to achieve high Coulombic efficiency while minimizing the corrosion. For the first time, this study reveals that the dipole moment and orientation of solvent molecules have significant impacts on lithium metal reversibility and corrosion. Solvents with high dipole moments are more likely to adsorb onto lithium metal surfaces, which also influence the solid electrolyte interphase. Using this principle, the use of LiNO3 is demonstrated as the sole salt in LiNi0.8Co0.1Mn0.1O2/Li cells can achieve excellent cycling stability. Overall, this work bridges the molecular structure of solvents to the reversibility and corrosion of lithium metal, and these concepts can be extended to other metal-based batteries.

3.
Environ Res ; 252(Pt 3): 119009, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38679277

RESUMEN

Fine particulate matter (PM2.5) harms human health and hinders normal human life. Considering the serious complexity and obvious regional characteristics of PM2.5 pollution, it is urgent to fill in the comprehensive overview of regional characteristics and interannual evolution of PM2.5. This review studied the PM2.5 pollution in six typical areas between 2014 and 2022 based on the data published by the Chinese government and nearly 120 relevant literature. We analyzed and compared the characteristics of interannual and quarterly changes of PM2.5 concentration. The Beijing-Tianjin-Hebei region (BTH), Yangtze River Delta (YRD) and Pearl River Delta (PRD) made remarkable progress in improving PM2.5 pollution, while Fenwei Plain (FWP), Sichuan Basin (SCB) and Northeast Plain (NEP) were slightly inferior mainly due to the relatively lower level of economic development. It was found that the annual average PM2.5 concentration change versus year curves in the three areas with better pollution control conditions can be merged into a smooth curve. Importantly, this can be fitted for the accurate evaluation of each area and provide reliable prediction of its future evolution. In addition, we analyzed the factors affecting the PM2.5 in each area and summarize the causes of air pollution in China. They included primary emission, secondary generation, regional transmission, as well as unfavorable air dispersion conditions. We also suggested that the PM2.5 pollution control should target specific industries and periods, and further research need to be carried out on the process of secondary production. The results provided useful assistance such as effect prediction and strategy guidance for PM2.5 pollution control in Chinese backward areas.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Material Particulado , Material Particulado/análisis , China , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Mejoramiento de la Calidad , Tamaño de la Partícula
4.
Food Sci Nutr ; 12(3): 2068-2080, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38455195

RESUMEN

Studies suggest that mangiferin (MAF) has good therapeutic effects on chronic bronchitis and hepatitis. Also, it is one of the antiviral ingredients in Anemarrhena asphodeloides Bunge. However, its effect on the LPS-induced inflammation and intestinal flora during sepsis remains unclear yet. In the present study, LPS-stimulated inflammation RAW264.7 cells and LPS-induced sepsis mice were used to evaluate the efficacy of MAF in vitro and in vivo. 16S rDNA sequencing was performed to analyze the characteristics of intestinal flora of the sepsis mice. It has been demonstrated that MAF (12.5 and 25 µg/mL) significantly inhibited protein expressions of TLR4, MyD88, NF-κB, and TNF-α in the LPS-treated cells and reduced the supernatant TNF-α and IL-6 levels. In vivo, MAF (20 mg/kg) markedly protected the sepsis mice and reduced the serum TNF-α and IL-6 levels. Also, MAF significantly downregulated the protein expressions of TLR4, NF-κB, and MyD88 in the livers. Importantly, MAF significantly attenuated the pathological injuries of the livers and small intestines. Further, MAF significantly increased proportion of Bacteroidota and decreased the proportions of Firmicutes, Desulfobacterota, Actinobacteriota, and Proteobacteria at phylum level, and it markedly reduced the proportions of Escherichia-Shigella, Pseudoalteromonas, Staphylococcus at genus level. Moreover, MAF affects some metabolism-related pathways such as citrate cycle (TCA cycle), lipoic acid metabolism, oxidative phosphorylation, bacterial chemotaxis, fatty acid biosynthesis, and peptidoglycan biosynthesis of the intestinal flora. Thus, it can be concluded that MAF as a treatment reduces the inflammatory responses in vitro and in vivo by inhibiting the TLR4/ MyD88/NF-κB pathway, and corrects intestinal flora imbalance during sepsis to some degree.

5.
BMC Chem ; 18(1): 12, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218863

RESUMEN

OBJECTIVE: To establish a high-performance liquid chromatography-tandem mass spectrometry method (HPLC-MS/MS) to simultaneously determine colistin sulfate and tigecycline in human plasma. METHODS: Polymyxin B1 internal standard (20 µL) was added into 200 µL of plasma sample. The samples were treated with methanol-5% trichloroacetic acid (50:50, V/V) solution, and the protein precipitation method was adopted for post-injection analysis. The chromatographic column was a Dikma C18 (4.6 mm × 150 mm, 5 µm). For the mobile phase, 0.1% formic acid in aqueous solution was used for phase A, 0.1% formic acid in acetonitrile solution for phase B, and gradient elution was also applied. The flow rate was 0.8 mL/min, the column temperature was 40 °C, and the injection volume was 10 µL; Electrospray ionization and multiple reaction ion monitoring were adopted and scanned by the HPLC-MS/MS positive ion mode. RESULTS: The endogenous impurities in the plasma had no interference in the determination of the analytes. There existed a good linear relationship of colistin sulfate within the range of 0.1-10 µg/mL (R2 = 0.9986), with the lower limit of quantification (LLOQ) of 0.1 µg/mL. There existed a good linear relationship of tigecycline within the range of 0.05-5 µg/ mL (R2 = 0.9987), with the LLOQ of 0.05 µg/mL. The intra- and inter-day relative standard deviations of colistin sulfate and tigecycline were both less than 15%, and the accuracy was between 88.21% and 108.24%. The extraction had good stability, the extraction recovery rate was 87.75-91.22%, and the matrix effect was 99.40-105.26%. CONCLUSION: This study successfully established a method for simultaneously detecting colistin sulfate and tigecycline plasma concentrations. The method was simple, rapid, and highly sensitive and could be applied for therapeutic medication monitoring.

6.
Front Microbiol ; 14: 1190619, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180245

RESUMEN

Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen that can cause severe respiratory tract infections. Geraniol, a chemical component of essential oils, has antimicrobial and anti-inflammatory activities, along with low toxicity. However, the effect and mechanism of geraniol against P. aeruginosa virulence factors are rarely studied. In this study, we investigated the quorum sensing (QS) inhibitory effects and mechanisms of geraniol against P. aeruginosa PAO1, using physiological and biochemical techniques, quantitative reverse transcription polymerase chain reaction, and transcriptomics. Geraniol slightly affected P. aeruginosa PAO1 growth, prolonged the lag phase, and delayed growth periods in a concentration-dependent manner. Geraniol inhibited three QS systems of P. aeruginosa, las, rhl, and pqs by suppressing the expression level of their key genes, including the three signal synthetase encoding genes of lasI, rhlI, and pqsABCDEH, and the corresponding signal receptor encoding genes of lasR, rhlR, and pqsR. Geraniol also suppressed certain virulence genes regulated by these three QS systems, including rhlABC, lasAB, lecAB, phzABMS, and pelABG, resulting in the attenuation of the related virulence factors, rhamnolipids, exoprotease LasA, elastase, lectin, pyocyanin, and biofilm. In conclusion, geraniol can suppress the virulence factors of P. aeruginosa PAO1 by inhibiting the three QS systems of las, rhl, and pqs. This study is significant for improving the treatment of bacterial infections caused by P. aeruginosa.

9.
RSC Adv ; 13(2): 1267-1277, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36686958

RESUMEN

Background: oxidative stress is linked to various human diseases which developed into the idea of "disrupted redox signaling". Osteoporosis (OP) is a chronic skeletal disorder characterized by low bone mineral density and deterioration of bone microarchitecture among which estrogen deficiency is the main cause. Lack of estrogen leads to the imbalance between oxidation and anti-oxidation in patients, and oxidative stress is an important link in the pathogenesis of OP. The ratio of the reduced to the oxidized thiols can characterize the redox status. However, few methods have been reported for the simultaneous determination of reduced forms and their oxidized forms of thiols in plasma. Methods: we developed a hollow fiber centrifugal ultrafiltration (HFCF-UF) method for sample preparation and validated a high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) method to determine two reduced forms of thiols-homocysteine (Hcy), cysteine (Cys) levels and their respective oxidized compounds, homocystine (HHcy) and cystine (Cyss) in rat plasma simultaneously for the first time. Thirty-six female rats were randomly divided into three groups: normal control (NC), oxidative stress (ovariectomy, OVX) and ovariectomy with hydrogen-rich saline administration (OVX + HRS). Results: the validation parameters for the methodological results were within the acceptance criteria. There were both significant differences of Hcy/HHcy (Hcy reduced/oxidized) and Cys/Cyss (Cys reduced/oxidized) in rat plasma between three groups with both p < 0.05 and meanwhile, the p values of malondialdehyde, superoxide dismutase and glutathione peroxidase were all less than 0.01. The value of both Hcy/HHcy and Cys/Cyss were significantly decreased with the change of Micro-CT scan result of femoral neck in OVX group (both the trabecular thickness and trabecular number significantly decreased with a significant increase of trabecular separation) which demonstrate OP occurs. The change of Hcy/HHcy is more obvious and prominent than Cys/Cyss. Conclusions: the Hcy/HHcy and Cys/Cyss could be suitable biomarkers for oxidative stress and especially Hcy/HHcy is more sensitive. The developed method is simple and accurate. It can be easily applied in clinical research to further evaluate the oxidative stress indicator for disease risk factors.

10.
Int J Biol Sci ; 18(15): 5667-5680, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36263185

RESUMEN

Here we studied expression and potential functions of Gαi3 in cervical cancer. The bioinformatics analysis together with the results from local patients' tissues revealed that Gαi3 expression was remarkably elevated in human cervical cancer tissues and different cervical cancer cells, and was associated with poor overall survival and poor disease-specific survival of patients. Gαi3 depletion resulted in profound anti-cervical cancer activity. In primary or immortalized cervical cancer cells, Gαi3 shRNA or CRISPR/Cas9-caused Gαi3 knockout/KO largely hindered cell proliferation and migration, and provoked apoptosis. On the contrast, ectopic Gαi3 overexpression further enhanced cervical cancer proliferation and migration. Akt-mTOR activation in primary cervical cancer cells was significantly reduced after Gαi3 silencing or KO, but was augmented following Gαi3 overexpression. Further studies revealed that the transcription factor GATA4 binding to Gαi3 promoter region was significantly enhanced in cervical cancer tissues and cells. Gαi3 expression was decreased by GATA4 shRNA, but upregulated following GATA4 overexpression. In vivo, the growth of cervical cancer xenografts was robustly suppressed after Gαi3 silencing or KO. Gαi3 depletion and Akt-mTOR inactivation were detected in Gαi3-silenced/-KO cervical cancer xenograft tissues. Together, upregulated Gαi3 is a valuable oncotarget of cervical cancer.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Neoplasias del Cuello Uterino , Femenino , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción GATA4 , ARN Interferente Pequeño/genética , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Proliferación Celular/genética , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis/genética , Línea Celular Tumoral
11.
Bioanalysis ; 14(11): 795-806, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35848797

RESUMEN

Aim: To establish a simple and accurate method to explore the correlation between free and total concentrations of lamotrigine (LTG) and the active oxcarbazepine metabolite monohydroxy derivative (MHD) (10,11-dihydro-10-hydroxycarbamazepine) in clinical patients. Materials & methods: Serum samples were prepared by hollow-fiber centrifugal ultrafiltration and then injected into UPLC for analysis. Results: Absolute recovery was as high as approximately 90.1-98.6% with excellent precision (relative standard deviation <6.7%). Analysis time was reduced to 5 min. There were significant individual differences in the protein binding rates of both LTG and MHD that were probably due to the use of different clinical patients. Conclusion: Free concentrations of LTG and MHD cannot be estimated by total concentration in specific clinical patients. Free drug monitoring of LTG and MHD in clinical therapeutic drug monitoring is important and essential.


Asunto(s)
Anticonvulsivantes , Ultrafiltración , Monitoreo de Drogas/métodos , Humanos , Lamotrigina/uso terapéutico , Oxcarbazepina/uso terapéutico
12.
Cell Death Dis ; 13(6): 569, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35760803

RESUMEN

Identification of novel molecular signaling targets for non-small cell lung cancer (NSCLC) is important. The present study examined expression, functions and possible underlying mechanisms of the sodium/myo-inositol co-transporter SLC5A3 in NSCLC. The Cancer Genome Atlas (TCGA) database and local NSCLC tissue results demonstrated that SLC5A3 expression in NSCLC tissues (including patient-derived primary NSCLC cells) was significantly higher than that in normal lung tissues and lung epithelial cells. In primary NSCLC cells and immortalized lines, SLC5A3 depletion, using small hairpin RNA (shRNA) and CRSIRP/Cas9 methods, robustly impeded cell proliferation and migration, simultaneously provoking cell cycle arrest and apoptosis. Conversely, ectopic overexpression of SLC5A3 further enhanced proliferation and migration in primary NSCLC cells. The intracellular myo-inositol contents and Akt-mTOR activation were largely inhibited by SLC5A3 silencing or knockout (KO), but were augmented following SLC5A3 overexpression in primary NSCLC cells. Significantly, SLC5A3 KO-induced anti-NSCLC cell activity was largely ameliorated by exogenously adding myo-inositol or by a constitutively-active Akt construct. By employing the patient-derived xenograft (PDX) model, we found that the growth of subcutaneous NSCLC xenografts in nude mice was largely inhibited by intratumoral injection SLC5A3 shRNA adeno-associated virus (AAV). SLC5A3 silencing, myo-inositol depletion, Akt-mTOR inactivation and apoptosis induction were detected in SLC5A3 shRNA virus-injected NSCLC xenograft tissues. Together, elevated SLC5A3 promotes NSCLC cell growth possibly by maintaining myo-inositol contents and promoting Akt-mTOR activation.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Simportadores , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Inositol/metabolismo , Neoplasias Pulmonares/genética , Ratones , Ratones Desnudos , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño , Sodio/metabolismo , Simportadores/genética , Simportadores/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
13.
Sci Adv ; 8(21): eabn6928, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35622925

RESUMEN

We here examined the potential biological function of phosphoenolpyruvate carboxykinase 1 (PCK1) in angiogenesis. shRNA- or CRISPR-Cas9-induced PCK1 depletion potently inhibited endothelial cell proliferation, migration, sprouting, and tube formation, whereas ectopic PCK1 overexpression exerted opposite activity. In HUVECs, Gαi3 expression and Akt activation were decreased following PCK1 depletion, but were augmented by ectopic PCK1 overexpression. In vivo, retinal expression of PCK1 gradually increased from postnatal day 1 (P1) to P5. The intravitreous injection of endothelial-specific PCK1 shRNA adenovirus at P1 potently inhibited the radial extension of vascular plexus at P5. Conditional endothelial knockdown of PCK1 in adult mouse retina increased vascular leakage and the number of acellular capillaries while decreasing the number of RGCs in murine retinas. In diabetic retinopathy patients, PCK1 mRNA and protein levels were up-regulated in retinal tissues. Together, PCK1 is essential for angiogenesis possibly by mediating Gαi3 expression and Akt activation.

14.
Int J Biol Sci ; 18(7): 2994-3005, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35541904

RESUMEN

Overexpression and/or overactivation of sphingosine kinase 1/2 (SphK1/2) is important for tumorigenesis and progression of cervical cancer. The current study examined the potential activity and signaling mechanisms of SKI-V, a non-lipid small molecule SphK inhibitor, against cervical cancer cells. In different primary and immortalized cervical cancer cells, SKI-V exerted significant anti-cancer activity by inhibiting cell viability, colony formation, proliferation, cell cycle progression and cell migration. Significant apoptosis activation was detected in SKI-V-treated cervical cancer cells. Significantly, SKI-V also provoked programmed necrosis cascade in cervical cancer cells, as it induced mitochondrial p53-cyclophilin-D-adenine nucleotide translocator-1 (ANT1) complexation, mitochondrial membrane potential collapse, reactive oxygen species production and the release of lactate dehydrogenase into the medium. Further, SKI-V blocked SphK activation and induced ceramide accumulation in primary cervical cancer cells, without affecting SphK1/2 expression. SKI-V-induced cytotoxicity in cervical cancer cells was largely inhibited by sphingosine-1-phosphate or the SphK1 activator K6PC-5, but was sensitized by adding the short-chain ceramide C6. Moreover, SKI-V inhibited Akt-mTOR (mammalian target of rapamycin) activation in primary cervical cancer cells, and its cytotoxicity was mitigated by a constitutively-active Akt. In vivo, daily intraperitoneal injection of SKI-V significantly inhibited subcutaneous primary cervical cancer xenograft growth in nude mice. Together, the SphK inhibitor SKI-V suppresses cervical cancer growth in vitro and in vivo.


Asunto(s)
Antineoplásicos , Neoplasias del Cuello Uterino , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Ceramidas/metabolismo , Femenino , Humanos , Mamíferos/metabolismo , Ratones , Ratones Desnudos , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico
15.
Front Microbiol ; 13: 1105921, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36620018

RESUMEN

Pseudomonas aeruginosa (P. aeruginosa), a common cause of severe chronic infections, has developed heteroresistance to several antibiotics, thus hindering successful treatment. In this study, we aimed to investigate the characteristics and mechanisms underlying levofloxacin (LVX) heteroresistance in P. aeruginosa PAS71 and PAS81 clinical isolates using a combination of physiological and biochemical methods, bacterial genomics, transcriptomics, and qRT-PCR. The six P. aeruginosa strains, namely PAS71, PAS72, PAS81, PAS82, ATCC27853, and PAO1, were studied. The Kirby-Bauer (K-B), minimum inhibitory concentration (MIC) test, and population analysis profile (PAP) experimental results showed that PAS71, PAS81, ATCC27853, and PAO1 were heteroresistant to LVX, with MIC of 0.25, 1, 0.5, and 2 µg/ml, respectively; PAS72 and PAS82 were susceptible to LVX with a MIC of 0.25 and 0.5 µg/ml, respectively. The resistance of PAS71 and PAS81 heteroresistant subpopulations was unstable and had a growth fitness cost. Genomic and transcriptomic results proved that the unstable heteroresistance of PAS71 and PAS81 was caused by elevated expression of essential genes involved in DNA replication and repair, and homologous recombination, rather than their genomic single-nucleotide polymorphism (SNP) and insertion-deletion (InDel) mutations. Additionally, PAS71 and PAS81 enhanced virulence and physiological metabolism, including bacterial secretion systems and biosynthesis of siderophore group nonribosomal peptides, in response to LVX stress. Our results suggest that the upregulation of key genes involved in DNA replication and repair, and homologous recombination causes unstable heteroresistance in P. aeruginosa against LVX. This finding provides novel insights into the occurrence and molecular regulation pathway of P. aeruginosa heteroresistant strains.

16.
Anal Bioanal Chem ; 413(25): 6225-6237, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34406463

RESUMEN

The presence of reduced aminothiols, including homocysteine (Hcy), cysteine (Cys), cysteinyl-glycine (CG), and glutathione (GSH), is significantly increased in the pathological state. However, there have been no reports on the relationship between reduced aminothiols (Hcy, Cys, CG, and GSH) and different genders, ages, and drug combinations in human blood. The accurate quantification of these reduced thiols in biological fluids is important for monitoring some special pathological conditions of humans. However, the published methods typically not only require cumbersome and technically challenging processing procedures to ensure reliable measurements, but are also laborious and time-consuming, which may disturb the initial physiological balance and lead to inaccurate results. We developed a hollow fiber centrifugal ultrafiltration (HFCF-UF) method for sample preparation coupled with a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method and used it to determine four reduced aminothiols (Hcy, Cys, CG, and GSH) in human blood for the first time. A total of 96 clinical patients were enrolled in our study. The influence of different genders, ages, and drug combinations on the levels of four reduced thiols in human blood was also discussed by SPSS 24.0. The sample preparation was simplified to a single 5 min centrifugation step in a sealed system that did not disturb the physiological environment. The validation parameters for the methodological results were excellent. The procedure was successfully applied to monitoring the concentrations of four reduced aminothiols (Hcy, Cys, CG, and GSH) in 96 clinical blood samples. There were no significant differences in Hcy, Cys, CG, or GSH for the different genders, ages, or combinations with methotrexate or vancomycin (P > 0.05). However, there was a significant increase in Hcy concentration in patients treated with valproic acid who were diagnosed with epilepsy (p=0.0007). It is advisable to measure reduced Hcy level in patients taking valproic acid. The developed HFCF-UF method was simple and accurate. It can be easily applied in clinical research to evaluate oxidative stress in further study.


Asunto(s)
Análisis Químico de la Sangre/métodos , Cisteína/sangre , Dipéptidos/sangre , Glutatión/sangre , Homocisteína/sangre , Ultrafiltración/métodos , Antibacterianos/sangre , Antibacterianos/química , Cromatografía Líquida de Alta Presión/métodos , Cisteína/química , Dipéptidos/química , Inhibidores Enzimáticos/sangre , Inhibidores Enzimáticos/química , Congelación , Glutatión/química , Homocisteína/química , Humanos , Límite de Detección , Metotrexato/sangre , Metotrexato/química , Estructura Molecular , Espectrometría de Masas en Tándem/métodos , Temperatura , Ácido Valproico/sangre , Ácido Valproico/química , Vancomicina/sangre , Vancomicina/química
17.
Theranostics ; 11(17): 8535-8549, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34373757

RESUMEN

Neuroligin-3 (NLGN3) is necessary and sufficient to promote glioma cell growth. The recruitment of Gαi1/3 to the ligand-activated receptor tyrosine kinases (RTKs) is essential for mediating oncogenic signaling. Methods: Various genetic strategies were utilized to examine the requirement of Gαi1/3 in NLGN3-driven glioma cell growth. Results: NLGN3-induced Akt-mTORC1 and Erk activation was inhibited by decreasing Gαi1/3 expression. In contrast ectopic Gαi1/3 overexpression enhanced NLGN3-induced signaling. In glioma cells, NLGN3-induced cell growth, proliferation and migration were attenuated by Gαi1/3 depletion with shRNA, but facilitated with Gαi1/3 overexpression. Significantly, Gαi1/3 silencing inhibited orthotopic growth of patient-derived glioma xenografts in mouse brain, whereas forced Gαi1/3-overexpression in primary glioma xenografts significantly enhanced growth. The growth of brain-metastatic human lung cancer cells in mouse brain was largely inhibited with Gαi1/3 silencing. It was however expedited with ectopic Gαi1/3 overexpression. In human glioma Gαi3 upregulation was detected, correlating with poor prognosis. Conclusion: Gαi1/3 mediation of NLGN3-induced signaling is essential for neuronal-driven glioma growth.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Glioma/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Anciano , Animales , Neoplasias Encefálicas/patología , Moléculas de Adhesión Celular Neuronal/fisiología , Línea Celular Tumoral , Proliferación Celular , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/fisiología , Glioma/genética , Glioma/patología , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de la Membrana/fisiología , Ratones , Persona de Mediana Edad , Proteínas del Tejido Nervioso/fisiología , Neuronas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Extractos Vegetales , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal
18.
Front Pharmacol ; 12: 636975, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995039

RESUMEN

High-dose methotrexate (HD-MTX) can be highly effective as well as extremely toxic. Many drug molecules can bind to plasma proteins to different extents in vivo, whereas only the free drug can reach the site of action to exert a pharmacological effect and cause toxicity. However, free MTX concentrations in plasma have not been reported. Traditional analyses of free drugs are both cumbersome and inaccurate. We collected 92 plasma samples from 52 children diagnosed with ALL or NHL or other lymphomas that were treated with HD-MTX. The hollow fiber centrifugal ultrafiltration (HFCF-UF) was used to prepare plasma samples for analysis of the free MTX concentration. Protein precipitation was employed to measure the total MTX concentration. The HFCF-UF is a simple method involving a step of ordinary centrifugation; the validation parameters for the methodological results were satisfactory and fell within the acceptance criteria. A linearity coefficient r 2 of 0.910 was obtained for the correlation between the free and total MTX plasma concentrations in 92 plasma samples. However, the free and total MTX concentrations was only weakly correlated in 16 clinical plasma specimens with total MTX concentrations >2 µmol L-1 (r 2 = 0.760). Both the free and total MTX concentrations at 42 h were negatively correlated with the creatinine clearance (CCr) level (P = 0.023, r = -0.236 for total MTX and P = 0.020, r = -0.241for free MTX, respectively). The free MTX concentration could not be accurately estimated from the total MTX concentration for patients with high MTX levels which are conditions under which toxic reactions are more likely to occur. High plasma MTX levels could become a predictor of the occurrence of MTX nephrotoxicity to draw people's attention. The proposed HFCF-UF method is a simple and accurate way to evaluate efficacy and toxicity in clinical therapeutic drug monitoring.

19.
Oncogene ; 40(22): 3826-3844, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33958720

RESUMEN

Gastric cancer (GC) is one of the leading causes of human mortality around the world. We have previously shown that Gαi1 (the inhibitory subunit 1 of the heterotrimeric guanine nucleotide-binding protein) recruitment to ligand-activated receptor tyrosine kinases (RTKs) is essential for signaling. Testing its role in GC cancer-promoting functions, we found that Gαi1 is upregulated in human GC, correlating with poor overall survival. In established and primary human GC cells, Gαi1 shRNA (small hairpin RNA) or knockout produced significant anti-GC cell activity, proliferation and migration was inhibited, and apoptosis was activated. Conversely, ectopic Gαi1 overexpression promoted proliferation and migration of GC cells in vitro. By examining the tumor-suppressive miRNA microRNA-200a (miR-200a), we found that miR-200a directly silenced Gαi1 to induce anti-GC cell activity. The expression of miR-200a was downregulated in human GC, correlating with upregulation of a novel miR-200a-targeting long non-coding RNA (LncRNA), PINK1 (PTEN Induced Kinase 1)-AS. RNA immunoprecipitation, RNA-pull down, and RNA fluorescence in situ hybridization assays confirmed that PINK1-AS directly binds to miR-200a. Silencing PINK1-AS in GC cells led to miR-200a accumulation, Gαi1 downregulation, and inhibition of GC cell progression in vitro, whereas PINK1-AS upregulation produced the converse results. Significantly, anti-GC cell activity induced by PINK1-AS shRNA was ameliorated by the expression of miR-200a antisense or the 3'-UTR (untranslated region)-depleted Gαi1. In vivo, the growth of subcutaneous MGC-803 xenografts in nude mice was inhibited by PINK1-AS shRNA, but accelerated by PINK1-AS overexpression. Patient-derived GC xenograft growth in nude mice was largely inhibited after intratumoral injection of PINK1-AS shRNA lentivirus. In conclusion, PINK1-AS promotes Gαi1-driven GC progression by sponging miR-200a.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , MicroARNs/genética , ARN Largo no Codificante/genética , Neoplasias Gástricas/genética , Anciano , Animales , Carcinogénesis , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/metabolismo , Persona de Mediana Edad , ARN Largo no Codificante/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Tasa de Supervivencia
20.
Mol Ther Nucleic Acids ; 24: 385-402, 2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-33868783

RESUMEN

Osteosarcoma (OS) is the most common primary bone malignancy in the adolescent population. MAFG (v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog G) forms a heterodimer with Nrf2 (NF-E2-related factor 2), binding to antioxidant response element (ARE), which is required for Nrf2 signaling activation. We found that MAFG mRNA and protein expression is significantly elevated in human OS tissues as well as in established and primary human OS cells. In human OS cells, MAGF silencing or knockout (KO) largely inhibited OS cell growth, proliferation, and migration, simultaneously inducing oxidative injury and apoptosis activation. Conversely, ectopic overexpression of MAFG augmented OS cell progression in vitro. MicroRNA-4660 (miR-4660) directly binds the 3' untranslated region (UTR) of MAFG mRNA in the cytoplasm of OS cells. MAFG 3' UTR luciferase activity and expression as well as OS cell growth were largely inhibited with forced miR-4660 overexpression but augmented with miR-4660 inhibition. In vivo, MAGF short hairpin RNA (shRNA) or forced overexpression of miR-4660 inhibited subcutaneous OS xenograft growth in severe combined immunodeficient mice. Furthermore, MAFG silencing or miR-4660 overexpression inhibited OS xenograft in situ growth in proximal tibia of the nude mice. In summary, MAFG overexpression-driven OS cell progression is inhibited by miR-4660. The miR-4660-MAFG axis could be novel therapeutic target for human OS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...