Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Sci Rep ; 14(1): 5339, 2024 03 04.
Article En | MEDLINE | ID: mdl-38438469

Tumor-associated neutrophils (TANs) can promote tumor progression. This study aimed to investigate the molecular signature that predict the prognosis and immune response of breast cancer (BRCA) based on TAN-related gene (TANRG) expression data. The RNA-seq data of BRCA were gathered from The Cancer Genome Atlas (TCGA) and gene expression omnibus (GEO) datasets. Univariate Cox regression analysis and the least absolute shrinkage and selection operator for selecting prognostic genes. A neo-TAN-related risk signature was constructed by multivariate Cox regression analysis. Time-dependent receiver operating characteristic (ROC) curve analyses and Kaplan-Meier analyses were performed to validate the signature in GEO cohorts and the triple-negative breast cancer (TNBC) subtype. We constructed an independent prognostic factor model with 11 TANRGs. The areas under the ROC curve (AUCs) of the TCGA training cohorts for 3-, 5-, and 7-year overall survival were 0.72, 0.73, and 0.73, respectively. The AUCs of the GEO test cohorts for 3-, 5-, and 7-year overall survival were 0.83, 0.89, and 0.94 (GSE25066) and 0.67, 0.69, and 0.73 (GSE58812), respectively. The proportion of immune subtypes differed among the different risk groups. The IC50 values differed significantly between risk groups and can be used as a guide for systemic therapy. The prognostic model developed by TANRGs has excellent predictive performance in BRCA patients. In addition, this feature is closely related to the prediction of survival, immune activity and treatment response in BRCA patients.


Neutrophils , Triple Negative Breast Neoplasms , Humans , Prognosis , Genes, Neoplasm , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/therapy , Area Under Curve , Tumor Microenvironment/genetics
2.
Sci Rep ; 5: 16072, 2015 Nov 04.
Article En | MEDLINE | ID: mdl-26530728

We present an on-chip optical mode exchange between two multiplexed modes by using tapered directional couplers on silicon-on-insulator platform. The device consisting of mode multiplexing and mode exchange is compact with relatively large fabrication error tolerance. The simulation results show efficient higher order mode excitation and mode exchange. A low excess loss less than 0.5 dB and high extinction ratio larger than 15 dB over 10 nm wavelength range from 1535 to 1545 nm are achieved.

3.
Sci Rep ; 4: 6870, 2014 Nov 03.
Article En | MEDLINE | ID: mdl-25362900

We design a novel long-range hybrid wedge plasmonic (LRHWP) waveguide composed of two identical dielectric nanowires symmetrically placed on two opposed wedges of a diamond shaped metal wire. With strong coupling between the dielectric nanowire mode and long-range surface plasmon polariton (SPP) mode, both deep subwavelength mode confinement and low propagation loss are achieved. On one hand, when compared to the previous long-range hybrid SPP waveguide, LRHWP waveguide can achieve smaller mode size with similar propagation length; on the other hand, when compared to the previous hybrid wedge SPP waveguide, LRHWP waveguide can provide an order of magnitude longer propagation length with similar level of mode confinement. The designed LRHWP waveguide also features an overall advantage of one-order improvement of Figure of Merit. We further evaluate in detail the impacts of possible practical fabrication imperfections on the mode properties. The obtained results of mode properties show that the proposed LRHWP waveguide with an optimized wedge tip angle of 140 degree is fairly tolerant to practical fabrication errors in geometry parameters such as misalignment in the horizontal direction, asymmetry in the vertical direction, variation of wedge tip angle, tilt or rotation of metal wire, and variation of wedge tip curvature radius.

...