Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(10): 5042-5059, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38334209

RESUMEN

With the increasing popularity of flexible and wearable electronic devices, the demand for power supplies that can be easily bent or worn is also rapidly growing. However, traditional lithium ion batteries are difficult to adapt to complex wearable devices because of their unsatisfactory flexibility and thickness as well as safety issues. Zinc-ion batteries have several advantages, including low redox potential, high theoretical capacity, high safety, and abundant reserves. These features make flexible zinc-ion batteries (FZIBs) an ideal wearable energy storage device candidate. The electrochemical performance and mechanical deformability of FZIBs were pivotally determined based on the properties of their electrode and electrolyte. Herein, we summarize some recent advances from 2015 to 2023 in the design and preparation of various electrode and electrolyte materials for FZIBs with controllable morphology and structure, excellent mechanical property, and enhanced electrochemical performance. Moreover, efforts to explore the potential practical applications of FZIBs have also been considered. Finally, we present and discuss current challenges and opportunities for the development of high-performance FZIBs.

2.
ChemSusChem ; 17(2): e202301281, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37735149

RESUMEN

Due to its high energy density and low cost, Li-rich Mn-based layered oxides are considered potential cathode materials for next generation Li-ion batteries. However, they still suffer from the serious obstacle of low initial Coulombic efficiency, which is detrimental to their practical application. Here, an efficient surface modification method via NH4 H2 PO4 assisted pyrolysis is performed to improve the Coulombic efficiency of Li1.2 Mn0.54 Ni0.13 Co0.13 O2 , where appropriate oxygen vacancies, Li3 PO4 and spinel phase are synchronously generated in the surface layer of LMR microspheres. Under the synergistic effect of the oxygen vacancies and spinel phase, the unavoidable oxygen release in the cycling process was effectively suppressed. Moreover, the induced Li3 PO4 nanolayer could boost the lithium-ion diffusion and mitigate the dissolution of transition metal ions, especially manganese ions, in the material. The optimally modified sample yielded an impressive initial Coulombic efficiency and outstanding rate performance.

3.
Small ; 20(11): e2306615, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37932020

RESUMEN

Aqueous zinc-ion batteries (AZIBs) are considered to be a rising star in the large-scale energy storage area because of their low cost and environmental friendliness properties. However, the limited electrochemical performance of the cathode and severe zinc dendrite of the anode severely hinder the practical application of AZIBs. Herein, a novel 3D interconnected VS2 ⊥V4 C3 Tx heterostructure material is prepared via one-step solvothermal method. Morphological and structural characterizations show that VS2 nanosheets are uniformly and dispersedly distributed on the surface of the V4 C3 MXene substrate, which can effectively suppress volume change of the VS2 . Owing to the open heterostructure along with the high conductivity of V4 C3 MXene, the VS2 ⊥V4 C3 Tx cathode shows a high specific capacity of 273.9 mAh g-1 at 1 A g-1 and an excellent rate capability of 143.2 mAh g-1 at 20 A g-1 . The V4 C3 MXene can also effectively suppress zinc dendrite growth when used as protective layer for the Zn anode, making the V4 C3 Tx @Zn symmetric cell with a stable voltage profile for ≈1700 h. Benefitting from the synergistic modification effect of V4 C3 MXene on both the cathode and anode, the VS2 ⊥V4 C3 Tx ||V4 C3 Tx @Zn battery exhibits a long cycling lifespan of 5000 cycles with a capacity of 157.1 mAh g-1 at 5A g-1 .

4.
Mater Horiz ; 10(8): 3162-3173, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37232288

RESUMEN

The development of high energy density and long cycle lifespan aqueous zinc ion batteries is hindered by the limited cathode materials and serious zinc dendrite growth. In this work, a defect-rich VS2 cathode material is manufactured by in situ electrochemical defect engineering under high charge cut-off voltage. Owing to the rich abundant vacancies and lattice distortion in the ab plane, the tailored VS2 can unlock the transport path of Zn2+ along the c-axis, enabling 3D Zn2+ transport along both the ab plane and c-axis, and reduce the electrostatic interaction between VS2 and zinc ions, thus achieving excellent rate capability (332 mA h g-1 and 227.8 mA h g-1 at 1 A g-1 and 20 A g-1, respectively). The thermally favorable intercalation and 3D rapid transport of Zn2+ in the defect-rich VS2 are verified by multiple ex situ characterizations and density functional theory (DFT) calculations. However, the long cycling stability of the Zn-VS2 battery is still unsatisfactory due to the Zn dendrite issue. It can be found that the introduction of an external magnetic field enables changing the movement of Zn2+, suppressing the growth of zinc dendrites, and resulting in enhanced cycling stability from about 90 to 600 h in the Zn||Zn symmetric cell. As a result, a high-performance Zn-VS2 full cell is realized by operating under a weak magnetic field, which shows an ultralong cycle lifespan with a capacity of 126 mA h g-1 after 7400 cycles at 5 A g-1, and delivers the highest energy density of 304.7 W h kg-1 and maximum power density of 17.8 kW kg-1.

5.
Small ; 19(25): e2207998, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36929331

RESUMEN

As the new generation of energy storage systems, the flexible battery can effectively broaden the application area and scope of energy storage devices. Flexibility and energy density are the two core evaluation parameters for the flexible battery. In this work, a flexible VS2 material (VS2 @CF) is fabricated by growing the VS2 nanosheet arrays on carbon foam (CF) using a simple hydrothermal method. Benefiting from the high electric conductivity and 3D foam structure, VS2 @CF shows an excellent rate capability (172.8 mAh g-1 at 5 A g-1 ) and cycling performance (130.2 mAh g-1 at 1 A g-1 after 1000 cycles) when it served as cathode material for aqueous zinc-ion batteries. More importantly, the quasi-solid-state battery VS2 @CF//Zn@CF assembled by the VS2 @CF cathode, CF-supported Zn anode, and a self-healing gel electrolyte also exhibits excellent rate capability (261.5 and 149.8 mAh g-1 at 0.2 and 5 A g-1 , respectively) and cycle performance with a capacity of 126.6 mAh g-1 after 100 cycles at 1 A g-1 . Moreover, the VS2 @CF//Zn@CF full cell also shows good flexible and self-healing properties, which can be charged and discharged normally under different bending angles and after being destroyed and then self-healing.

6.
Adv Sci (Weinh) ; 10(4): e2203552, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36504360

RESUMEN

As a promising cathode material of sodium-ion batteries, Na3 V2 (PO4 )3 (NVP) has attracted extensive attention in recent years due to its high stability and fast Na+ ion diffusion. However, the reversible capacity based on the two-electron reaction mechanism is not satisfactory limited by the inactive M1 lattice sites during the insertion/extraction process. Herein, self-supporting 3D porous NVP materials with different crystallinity are fabricated on carbon foam substrates by a facile electrostatic spray deposition method. The V5+ /V4+ redox couple is effectively activated and the three-electron reactions are realized in NVP for sodium storage by a proper crystallinity tuning. In a disordered NVP sample, an ultra-high specific capacity of 179.6 mAh g-1 at 0.2 C is achieved due to the coexistence of redox reactions of the V4+ /V3+ and V5+ /V4+ couples. Moreover, a pseudocapacitive charge storage mechanism induced by the disordered structure is first observed in the NVP electrode. An innovative model is given to understand the disorder-induced-pseudocapacitance phenomenon in this polyanion cathode material.

7.
ACS Appl Mater Interfaces ; 14(34): 38875-38886, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35976057

RESUMEN

Transition metal nitrides (TMNs) with high specific capacity and electric conductivity have drawn considerable attention as electrode materials of lithium-ion batteries (LIBs). However, the cycling stability of most TMNs is not satisfactory, which was caused by the large volume variation during cycles due to their intrinsic conversion reaction mechanism. Herein, by rational design, a much stable tremella-like Ni0.2Mo0.8N/Ni3N heterostructure with amorphous Ni0.2Mo0.8N wrapped layer has been fabricated. The Ni3N particles worked as pillars to support the Ni0.2Mo0.8N material as well as conductive medium to facilitate ionic and electronic transport. The amorphous layer can relieve the structural stress of Ni0.2Mo0.8N during cycles. Moreover, an exotic intercalation-type reaction mechanism in the ternary nitride Ni0.2Mo0.8N was revealed by a series ex situ and in situ characterization. Profiting from these advantages, the Ni0.2Mo0.8N/Ni3N heterostructure anode displays an outstanding electrochemical performance with a high initial reversible discharge capacity of 1001.6 mA h g-1 at 0.1 A g-1, excellent cycle stability of 695.5 mA h g-1 at 2 A g-1 after 600 cycles, and superior rate capability of 595.3 mA h g-1 at a high current density of 5 A g-1. This work provides a new insight for designing high efficiency LIBs based on intercalation reaction for practical applications.

8.
Langmuir ; 37(10): 3223-3230, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33663208

RESUMEN

Lithium-rich manganese-based materials are currently considered to be highly promising cathode materials for next-generation lithium-ion batteries due to their high specific capacity (>250 mA h g-1) and low cost. A key challenge for the commercialization of these lithium-rich manganese-based materials is their poor rate performance, which is caused by the low electronic conductivity and increasing interface charge transfer resistance produced by the side reaction during the cycling procedure. In this work, we try to improve the rate performance of a lithium-rich manganese-based material Li1.2Mn0.54Co0.13Ni0.13O2 using a collaborative approach with Co-doping and NaxCoO2-coating methods. Cobalt doping can improve the electronic conductivity, and NaxCoO2 coating provides a convenient lithium-ion diffusion channel and moderately alleviates the inevitable decrease in cycling stability caused by cobalt doping. Under the synergistic effect of these two modification strategies, the surface and internal dynamics of the Li1.2Mn0.54Co0.13Ni0.13O2 material are enhanced and its rate performance is considerably improved without decay of the cycle stability.

9.
Small ; 16(32): e2001974, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32613708

RESUMEN

Transition metal hydro/oxides (TMH/Os) are treated as the most promising alternative supercapacitor electrodes thanks to their high theoretical capacitance due to the various oxidation states and abundant cheap resources of TMH/Os. However, the poor conductivity and logy reaction kinetics of TMH/Os severely restrict their practical application. Herein, hierarchical core-shell P-Ni(OH)2 @Co(OH)2 micro/nanostructures are in situ grown on conductive Ni foam (P-Ni(OH)2 @Co(OH)2 /NF) through a facile stepwise hydrothermal process. The unique heterostructure composed of P-Ni(OH)2 rods and Co(OH)2 nanoflakes boost the charge transportation and provide abundant active sites when used as the intergrated cathode for supercapacitors. It delivers an ultrahigh areal specific capacitance of 4.4 C cm-2 at 1 mA cm-2 and the capacitance can maintain 91% after 10 000 cycles, showing an ultralong cycle life. Additionally, a hybrid supercapacitor composed with P-Ni(OH)2 @Co(OH)2 /NF cathode and Fe2 O3 /CC anode shows a wider voltage window of 1.6 V, a remarkable energy density of 0.21 mWh cm-2 at the power density of 0.8 mW cm-2 , and outstanding cycling stability with about 81% capacitance retention after 5000 cycles. This innovative study not only supplies a newfashioned electronic apparatus with high-energy density and cycling stability but offers a fresh reference and enlightenment for synthesizing advanced integrated electrodes for high-performance hybrid supercapacitors.

10.
Nanoscale ; 12(2): 1144-1154, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31850436

RESUMEN

MoS2 is a promising anode candidate for high-performance lithium-ion batteries (LIBs) due to its unique layered structure and high specific capacity. However, the poor conductivity and unsatisfactory structural stability limit its practical application. Recently, a new class of 2D materials, V4C3-Mxene, has been found to combine metallic conductivity, high structural stability and rich surface chemistries. Herein, a facile method has been developed to fabricate V4C3-MXene/MoS2/C nanohybrids. Ultrasmall and few-layered MoS2 nanosheets are uniformly anchored on the surface of V4C3-MXene with a thin carbon-coating layer. The ultrasmall and few-layered MoS2 nanosheets can enlarge the specific areas, reduce the diffusion distance of lithium ions, and accelerate the transfer of charge carriers. As a supporting substrate, V4C3-MXene endows the nanohybrid with high electrical conductivity, strong structural stability, and fast reaction kinetics. Moreover, the carbon-coating layer can further enhance the electrical conductivity and structural stability of the hybrid material. Benefiting from these advantages, the V4C3-MXene/MoS2/C electrode shows an excellent cycling stability with a high reversible capability of 622.6 mA h g-1 at 1 A g-1 after 450 cycles, and a superior rate capability of 500.0 mA h g-1 at 10 A g-1. Thus, the V4C3-MXene/MoS2/C nanohybrid could become a promising anode material for high rate LIBs.

11.
Small ; 15(14): e1805420, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30848553

RESUMEN

1T phase MoS2 possesses higher conductivity than the 2H phase, which is a key parameter of electrochemical performance for lithium ion batteries (LIBs). Herein, a 1T-MoS2 /C hybrid is successfully synthesized through facile hydrothermal method with a proper glucose additive. The synthesized hybrid material is composed of smaller and fewer-layer 1T-MoS2 nanosheets covered by thin carbon layers with an enlarged interlayer spacing of 0.94 nm. When it is used as an anode material for LIBs, the enlarged interlayer spacing facilitates rapid intercalating and deintercalating of lithium ions and accommodates volume change during cycling. The high intrinsic conductivity of 1T-MoS2 also contributes to a faster transfer of lithium ions and electrons. Moreover, much smaller and fewer-layer nanosheets can shorten the diffusion path of lithium ions and accelerate reaction kinetics, leading to an improved electrochemical performance. It delivers a high initial capacity of 920.6 mAh g-1 at 1 A g-1 and the capacity can maintain 870 mAh g-1 even after 300 cycles, showing a superior cycling stability. The electrode presents a high rate performance as well with a reversible capacity of 600 mAh g-1 at 10 A g-1 . These results show that the 1T-MoS2 /C hybrid shows potential for use in high-performance lithium-ion batteries.

12.
Dalton Trans ; 46(35): 11691-11697, 2017 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-28825084

RESUMEN

The structural, magnetic, electrical and dielectric properties of an Ir-based double perovskite compound, La2CoIrO6, have been investigated. The sample undergoes a paramagnetic-ferromagnetic transition at TC, followed by a reentrant spin-glass transition at lower temperatures. The reentrant spin glass state in La2CoIrO6 is associated with the competitions of the antiferromagnetic coupling between Ir4+ and Co2+ ions and the ferromagnetic clusters. La2CoIrO6 shows a semiconducting transport behavior in the temperature range 65 to 360 K and the transport behavior can be well described by the three-dimensional Mott variable range hopping conduction mechanism. Moreover, a strong frequency dependence of dielectric constant behavior for La2CoIrO6 is observed and the dielectric relaxation can be ascribed to the electron hopping between different transition metal ions. In addition, the isothermal magnetic field dependent dielectric constant measurements show that a clear magnetodielectric coupling effect exists in La2CoIrO6 at low temperatures.

13.
Chemistry ; 23(64): 16338-16345, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-28850752

RESUMEN

A series of Ca-doped lithium vanadates Li3-x Cax VO4 (x=0, 0.01, 0.03, and 0.05) are synthesized successfully through a simple sol-gel method. XRD patterns and energy-dispersive X-ray spectroscopy (EDS) mappings reveal that the doped Ca2+ ions enter into the lattice successfully and are distributed uniformly throughout the Li3 VO4 (LVO) grains. XRD spectra and SEM images show that Ca doping can lead to an enlarged lattice and refined Li3 VO4 particles. A small quantity of V ions will transfer from V5+ to V4+ in the Ca-doped samples, as demonstrated by the X-ray photoelectron spectroscopy (XPS) analysis, which leads to an increase of an order of magnitude in the electronic conductivity. Improved rate capability and cycling stability are observed for the Ca-doped samples, and Li2.97 Ca0.03 VO4 exhibits the best electrochemical performance among the studied materials. The initial charge/discharge capacities at 0.1 C increase from 480/645 to 527/702 mA h g-1 as x varies from 0 to 0.03. The charge capacity of Li2.97 Ca0.03 VO4 at 1 C retains 95.3 % of its initial value after 180 cycles, whereas the capacity retention is only 40 % for the pristine sample. Moreover, Li2.97 Ca0.03 VO4 maintains a high discharge capacity of 301.7 mA h g-1 at a high discharge rate (4 C), whereas the corresponding value is only 95.2 mA h g-1 for the pristine LVO sample. The enhanced cycling and rate performances are ascribed to the increased lithium ion diffusivity and electrical conductivity induced by Ca doping.

14.
J Am Chem Soc ; 134(41): 17286-90, 2012 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-23009199

RESUMEN

Even though metal-organic frameworks (MOFs) derived from antiferromagnetic dimeric-Cu(II) building units and nonmagnetic molecular linkers are known to exhibit unexpected ferromagnetic behavior, a comprehensive understanding of the underlying mechanism remains elusive. Using a combined theoretical and experimental approach, here we reveal the origin of the long-range ferromagnetic coupling in a series of MOFs, constructed from antiferromagnetic dimeric-Cu(II) building blocks. Our studies show that the strong localization of copper vacancy states favors spontaneous spin polarization and formation of local moment. These copper vacancy-induced moments are coupled via the itinerant electrons in the conjugated aromatic linkers to establish a long-range ferromagnetic ordering. The proposed mechanism is supported by direct experimental evidence of copper vacancies and the magnetic hysteresis (M-H) loops.


Asunto(s)
Cobre/química , Compuestos Organometálicos/química , Dimerización , Modelos Moleculares , Teoría Cuántica
15.
Dalton Trans ; 41(36): 11176-86, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22871669

RESUMEN

The structure, anisotropic magnetic, electrical and thermal transport properties for single crystals of Ca(3)Co(4-x)Cu(x)O(9) (x = 0, 0.2, 0.4, 0.6 and 0.8) have been investigated systematically. The Cu-doping with x = 0.2 at Co-site is sufficient to drive the low-temperature spin-glass state in the Ca(3)Co(4)O(9) system. The value of resistivity along ab-plane decreases monotonously with increasing x in the whole temperature range studied, and around room temperature, the in-plane resistivity of Ca(3)Co(3.2)Cu(0.8)O(9) is about 71% smaller than that of the undoped sample. The temperature region where the Fermi-liquid transport mechanism dominates becomes remarkably narrowed due to the Cu-doping while the electronic correlation in the system is enhanced. With further addition of Cu in the Ca(3)Co(4)O(9) system, the in-plane thermopower (S(ab)) increases slowly and the room-temperature S(ab) for Ca(3)Co(3.2)Cu(0.8)O(9) is about 17% larger than that of the undoped sample. As a result, the power factor along the ab-plane is enhanced by about 3.8 times compared to the undoped sample. The results are suggested to originate from the variations of carrier concentration and electronic correlation in this system via the different Cu-doping states: Cu(3+)/Cu(2+) (Cu(3+) major) into the CoO(2) layer for x ≤ 0.4, while Cu(2+)/Cu(3+) (Cu(2+) major) into the Ca(2)CoO(3) layers for x > 0.4.

16.
Dalton Trans ; 40(37): 9544-50, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21850346

RESUMEN

Bi(2)Sr(3)Co(2)O(y) thin films are prepared on SrTiO(3) (100), (110) and (111) single crystal substrates using the sol-gel method. All the thin films are c-axis oriented regardless of the orientation of the substrate suggesting self-assembled c-axis orientation, and X-ray photoelectron spectroscopy results give evidence of coexistence of Co(3+) and Co(2+) ions in the derived films. Transmission electronic microscopy observations reveal that all samples are c-axis oriented with no obvious differences for different samples, and the c-axis lattice constant is determined as ~15 Å suggesting the misfit structure. A phenomenological thermodynamic phase diagram for self-assembled c-axis orientation is established for misfit cobaltate-based films using chemical solution deposition. All samples behave like semiconductors due to the coexistence of Co(3+)/Co(2+) ions, and the resistivity at 350 K is ~47, 39 and 17 mΩ cm for the thin films on SrTiO(3) (100), (110) and (111), respectively, whereas the Seebeck coefficient at 300 K is 97, 89 and 77 µV K(-1). The successful attainment of Bi(2)Sr(3)Co(2)O(y) thin films with self-assembled c-axis orientation will provide an effective prototype for investigation of growth mechanisms in complex oxide thin films with a misfit structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...