Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(21): 14754-14764, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38754363

RESUMEN

Lithium-sulfur (Li-S) batteries are highly considered as next-generation energy storage techniques. Weakly solvating electrolyte with low lithium polysulfide (LiPS) solvating power promises Li anode protection and improved cycling stability. However, the cathodic LiPS kinetics is inevitably deteriorated, resulting in severe cathodic polarization and limited energy density. Herein, the LiPS kinetic degradation mechanism in weakly solvating electrolytes is disclosed to construct high-energy-density Li-S batteries. Activation polarization instead of concentration or ohmic polarization is identified as the dominant kinetic limitation, which originates from higher charge-transfer activation energy and a changed rate-determining step. To solve the kinetic issue, a titanium nitride (TiN) electrocatalyst is introduced and corresponding Li-S batteries exhibit reduced polarization, prolonged cycling lifespan, and high actual energy density of 381 Wh kg-1 in 2.5 Ah-level pouch cells. This work clarifies the LiPS reaction mechanism in protective weakly solvating electrolytes and highlights the electrocatalytic regulation strategy toward high-energy-density and long-cycling Li-S batteries.

2.
Ecol Appl ; 34(1): e2920, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37750229

RESUMEN

Transgenerational plasticity (TGP) allows a plant to acclimate to external variable environments and is a potential mechanism that explains the range expansion and invasion success of some exotic plants. Most studies explored the traits of TGP associated with the success of exotic plant invasions by comparison studies among exotic, native, invasive, and noninvasive species. However, studies on the TGP of invasive plants in different resource environments are scarce, and the biological mechanisms involved are not well understood. This study aimed to determine the role of TGP in the invasiveness of Xanthium strumarium in northeast China. We measured the plant morphology of aboveground parts and the growth of three generations of the invader under different environmental conditions. The results showed that the intergenerational plasticity of X. strumarium was stronger under stress conditions. We found that the X. strumarium parent generation (F0) grown under water and/or nutrient deficiency conditions transferred the environmental information to their offspring (F1 and F2). The F1 generation grown under high-resource conditions has greater height with larger crown sizes, thicker basal diameters, and higher biomass. Both water and nutrients can affect the intergenerational transmission of plant plasticity, nutrients play a more important role compared with water. The high morphological intergenerational plasticity of X. strumarium under a pressure environment can help it quickly adapt to the new environment and accelerate the rapid expansion of the population in the short term. The root:shoot ratio and reproductive and nutrient distribution of the X. strumarium F0 and F1 generations showed high stability when the growth environment of the F0 generation differed from that of the F1 generation. The stable resource allocation strategy can ensure that the obtained resources are evenly distributed to each organ to maintain the long-term existence of the community. Therefore, the study of intergenerational transmission plasticity is of great significance for understanding the invasion process, mechanism, and prevention of invasive plants.


Asunto(s)
Xanthium , Biomasa , Plantas , Adaptación Fisiológica , Agua
3.
J Am Chem Soc ; 145(50): 27531-27538, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38054906

RESUMEN

Single-atom catalysts exhibit promising electrocatalytic activity, a trait that can be further enhanced through the introduction of heteroatom doping within the carbon skeleton. Nonetheless, the intricate relationship between the doping positions and activity remains incompletely elucidated. This contribution sheds light on an inductive effect of single-atom sites, showcasing that the activity of the oxygen reduction reaction (ORR) can be augmented by reducing the spatial gap between the doped heteroatom and the single-atom sites. Drawing inspiration from this inductive effect, we propose a synthesis strategy involving ligand modification aimed at precisely adjusting the distance between dopants and single-atom sites. This precise synthesis leads to optimized electrocatalytic activity for the ORR. The resultant electrocatalyst, characterized by Fe-N3P1 single-atom sites, demonstrates remarkable ORR activity, thus exhibiting great potential in zinc-air batteries and fuel cells.

4.
Angew Chem Int Ed Engl ; 62(48): e202313028, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37851474

RESUMEN

Coordination engineering for single-atom sites has drawn increasing attention, yet its chemical synthesis remains a tough issue, especially for tailorable coordination structures. Herein, a molecular recognition strategy is proposed to fabricate single-atom sites with regulable local coordination structures. Specifically, a heteroatom-containing ligand serves as the guest molecule to induce coordination interaction with the metal-containing host, precisely settling the heteroatoms into the local structure of single-atom sites. As a proof of concept, thiophene is selected as the guest molecule, and sulfur atoms are successfully introduced into the local coordination structure of iron single-atom sites. Ultrahigh oxygen reduction electrocatalytic activity is achieved with a half-wave potential of 0.93 V versus reversible hydrogen electrode. Furthermore, the strategy possesses excellent universality towards diversified types of single-atom sites. This work makes breakthroughs in the fabrication of single-atom sites and affords new opportunities in structural regulation at the atomic level.

5.
Environ Monit Assess ; 195(6): 759, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37249649

RESUMEN

Invasive plants can change the soil ecological environment in the invasion area to adapt to their growth and reproduction through root exudates. Root exudates are the most direct manifestation of plant responses to external environmental changes, but there is a lack of studies on root exudates of invasive plants in the context of inevitable global warming and nitrogen deposition. In this research, we used widely targeted metabolomics to investigate Ambrosia trifida root exudates during seedling and maturity under warming and nitrogen deposition to reveal the possible mechanisms of A. trifida adaptation to climate change. The results showed that the organic acids increased under warming condition but decreased after nitrogen addition in the seedling stage. Phenolic acids increased greatly after nitrogen addition in the mature stage. Most phenolic acids were annotated in the phenylpropane metabolic pathway and tyrosine metabolism. Therefore, nitrogen deposition may increase the adaptability of A. trifida through root exudates, making it more invasive under global warming. The results provide new ideas for preventing and controlling the invasion of A. trifida under climate change.


Asunto(s)
Ambrosia , Calentamiento Global , Nitrógeno/análisis , Monitoreo del Ambiente , Plantas , Suelo , Plantones/química , Exudados y Transudados/química
6.
Adv Mater ; 35(14): e2211022, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36739474

RESUMEN

Atomic Fe in N-doped carbon (FeNC) electrocatalysts for oxygen (O2 ) reduction at the cathode of proton exchange membrane fuel cells are the most promising alternative to platinum-group-metal catalysts. Despite recent progress on atomic FeNC O2  reduction, their controlled synthesis and stability for practical applications remain challenging. A two-step synthesis approach has recently led to significant advances in terms of Fe-loading and mass activity; however, the Fe utilization remains low owing to the difficulty of building scaffolds with sufficient porosity that electrochemically exposes the active sites. Herein, this issue is addressed by coordinating Fe in a highly porous nitrogen-doped carbon support (≈3295 m2  g-1 ), prepared by pyrolysis of inexpensive 2,4,6-triaminopyrimidine and a Mg2+ salt active site template and porogen. Upon Fe coordination, a high electrochemical active site density of 2.54 × 1019  sites gFeNC -1  and a record 52% FeNx electrochemical utilization based on in situ nitrite stripping are achieved. The Fe single atoms are characterized pre- and post-electrochemical accelerated stress testing by aberration-corrected high-angle annular dark field scanning transmission electron microscopy, showing no Fe clustering. Moreover, ex situ X-ray absorption spectroscopy and low-temperature Mössbauer spectroscopy suggest the presence of penta-coordinated Fe sites, which are further studied by density functional theory calculations.

7.
J Am Chem Soc ; 144(32): 14638-14646, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35791913

RESUMEN

Lithium-sulfur (Li-S) batteries have great potential as high-energy-density energy storage devices. Electrocatalysts are widely adopted to accelerate the cathodic sulfur redox kinetics. The interactions among the electrocatalysts, solvents, and lithium salts significantly determine the actual performance of working Li-S batteries. Herein, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), a commonly used lithium salt, is identified to aggravate surface gelation on the MoS2 electrocatalyst. In detail, the trifluoromethanesulfonyl group in LiTFSI interacts with the Lewis acidic sites on the MoS2 electrocatalyst to generate an electron-deficient center. The electron-deficient center with high Lewis acidity triggers cationic polymerization of the 1,3-dioxolane solvent and generates a surface gel layer that reduces the electrocatalytic activity. To address the above issue, Lewis basic salt lithium iodide (LiI) is introduced to block the interaction between LiTFSI and MoS2 and inhibit the surface gelation. Consequently, the Li-S batteries with the MoS2 electrocatalyst and the LiI additive realize an ultrahigh actual energy density of 416 W h kg-1 at the pouch cell level. This work affords an effective lithium salt to boost the electrocatalytic activity in practical working Li-S batteries and deepens the fundamental understanding of the interactions among electrocatalysts, solvents, and salts in energy storage systems.

8.
Angew Chem Int Ed Engl ; 61(33): e202208042, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35679060

RESUMEN

Aqueous zinc-air batteries possess inherent safety and are especially commendable facing high-temperature working conditions. However, their working feasibility at high temperatures has seldom been investigated. Herein, the working feasibility of high-temperature zinc-air batteries is systemically investigated. The effects of temperature on air cathode, zinc anode, and aqueous electrolyte are decoupled to identify the favorable and unfavorable factors. Specifically, parasitic hydrogen evolution reaction strengthens at high temperatures and leads to declined anode Faraday efficiency, which is identified as the main bottleneck. Moreover, zinc-air batteries demonstrate cycling feasibility at 80 °C. This work reveals the potential of zinc-air batteries to satisfy energy storage at high temperatures and guides further development of advanced batteries towards harsh working conditions.

9.
Sci Adv ; 8(11): eabn5091, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35294235

RESUMEN

Rechargeable zinc-air batteries call for high-performance bifunctional oxygen electrocatalysts. Transition metal single-atom catalysts constitute a promising candidate considering their maximum atom efficiency and high intrinsic activity. However, the fabrication of atomically dispersed transition metal sites is highly challenging, creating a need for for new design strategies and synthesis methods. Here, a clicking confinement strategy is proposed to efficiently predisperse transitional metal atoms in a precursor directed by click chemistry and ensure successful construction of abundant single-atom sites. Concretely, cobalt-coordinated porphyrin units are covalently clicked on the substrate for the confinement of the cobalt atoms and affording a Co-N-C electrocatalyst. The Co-N-C electrocatalyst exhibits impressive bifunctional oxygen electrocatalytic performances with an activity indicator ΔE of 0.79 V. This work extends the approach to prepare transition metal single-atom sites for efficient bifunctional oxygen electrocatalysis and inspires the methodology on precise synthesis of catalytic materials.

10.
Adv Mater ; 34(11): e2109407, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34989032

RESUMEN

Rechargeable zinc-air batteries afford great potential toward next-generation sustainable energy storage. Nevertheless, the oxygen redox reactions at the air cathode are highly sluggish in kinetics to induce poor energy efficiency and limited cycling lifespan. Air cathodes with asymmetric configurations significantly promote the electrocatalytic efficiency of the loaded electrocatalysts, whereas rational synthetic methodology to effectively fabricate asymmetric air cathodes remains insufficient. Herein, a strategy of asymmetric interface preconstruction is proposed to fabricate asymmetric air cathodes for high-performance rechargeable zinc-air batteries. Concretely, the asymmetric interface is preconstructed by introducing immiscible organic-water diphases within the air cathode, at which the electrocatalysts are in situ formed to achieve an asymmetric configuration. The as-fabricated asymmetric air cathodes realize high working rates of 50 mA cm-2 , long cycling stability of 3400 cycles at 10 mA cm-2 , and over 100 cycles under harsh conditions of 25 mA cm-2 and 25 mAh cm-2 . Moreover, the asymmetric interface preconstruction strategy is universal to many electrocatalytic systems and can be easily scaled up. This work provides an effective strategy toward advanced asymmetric air cathodes with high electrocatalytic efficiency and significantly promotes the performance of rechargeable zinc-air batteries.

11.
Angew Chem Int Ed Engl ; 61(7): e202114671, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-34889012

RESUMEN

Lithium-sulfur (Li-S) batteries are deemed as future energy storage devices due to ultrahigh theoretical energy density. Cathodic polysulfide electrocatalysts have been widely investigated to promote sluggish sulfur redox kinetics. Probing the surface structure of electrocatalysts is vital to understanding the mechanism of polysulfide electrocatalysis. In this work, we for the first time identify surface gelation on disulfide electrocatalysts. Concretely, the Lewis acid sites on disulfides trigger the ring-opening polymerization of the dioxolane solvent to generate a surface gel layer, covering disulfides and reducing the electrocatalytic activity. Accordingly, a Lewis base triethylamine (TEA) is introduced as a competitive inhibitor. Consequently, Li-S batteries with disulfide electrocatalysts and TEA afford high specific capacity and improved rate responses. This work affords new insights on the actual surface structure of electrocatalysts in Li-S batteries.

12.
J Am Chem Soc ; 143(47): 19865-19872, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34761937

RESUMEN

Lithium-sulfur (Li-S) batteries constitute promising next-generation energy storage devices due to the ultrahigh theoretical energy density of 2600 Wh kg-1. However, the multiphase sulfur redox reactions with sophisticated homogeneous and heterogeneous electrochemical processes are sluggish in kinetics, thus requiring targeted and high-efficient electrocatalysts. Herein, a semi-immobilized molecular electrocatalyst is designed to tailor the characters of the sulfur redox reactions in working Li-S batteries. Specifically, porphyrin active sites are covalently grafted onto conductive and flexible polypyrrole linkers on graphene current collectors. The electrocatalyst with the semi-immobilized active sites exhibits homogeneous and heterogeneous functions simultaneously, performing enhanced redox kinetics and a regulated phase transition mode. The efficiency of the semi-immobilizing strategy is further verified in practical Li-S batteries that realize superior rate performances and long lifespan as well as a 343 Wh kg-1 high-energy-density Li-S pouch cell. This contribution not only proposes an efficient semi-immobilizing electrocatalyst design strategy to promote the Li-S battery performances but also inspires electrocatalyst development facing analogous multiphase electrochemical energy processes.

13.
Angew Chem Int Ed Engl ; 60(35): 19262-19271, 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34156746

RESUMEN

The modulation effect has been widely investigated to tune the electronic state of single-atomic M-N-C catalysts to enhance the activity of oxygen reduction reaction (ORR). However, the in-depth study of modulation effect is rarely reported for the isolated dual-atomic metal sites. Now, the catalytic activities of Fe-N4 moiety can be enhanced by the adjacent Pt-N4 moiety through the modulation effect, in which the Pt-N4 acts as the modulator to tune the 3d electronic orbitals of Fe-N4 active site and optimize ORR activity. Inspired by this principle, we design and synthesize the electrocatalyst that comprises isolated Fe-N4 /Pt-N4 moieties dispersed in the nitrogen-doped carbon matrix (Fe-N4 /Pt-N4 @NC) and exhibits a half-wave potential of 0.93 V vs. RHE and negligible activity degradation (ΔE1/2 =8 mV) after 10000 cycles in 0.1 M KOH. We also demonstrate that the modulation effect is not effective for optimizing the ORR performances of Co-N4 /Pt-N4 and Mn-N4 /Pt-N4 systems.

14.
Chem Soc Rev ; 50(13): 7745-7778, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34017967

RESUMEN

Oxygen reduction and evolution reactions constitute the core process of many vital energy storage or conversion techniques. However, the kinetic sluggishness of the oxygen redox reactions and heavy reliance on noble-metal-based electrocatalysts strongly limit the energy efficiency of the related devices. Developing high-performance noble-metal-free bifunctional ORR and OER electrocatalysts has gained worldwide attention, where much important progress has been made during the last decade. This review systematically addresses the design principles to obtain high-performance noble-metal-free bifunctional oxygen electrocatalysts by emphasizing strategies of both intrinsic activity regulation and active site integration. A statistical analysis of the reported bifunctional electrocatalysts is further carried out to reveal the composition-performance relationship and guide further exploration of emerging candidates. Finally, perspectives for developing advanced bifunctional oxygen electrocatalysts and aqueous rechargeable metal-air batteries are proposed.

15.
Angew Chem Int Ed Engl ; 60(28): 15281-15285, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-33938631

RESUMEN

Efficient energy storage at low temperatures starves for competent battery techniques. Herein, inherent advantages of zinc-air batteries on low-temperature electrochemical energy storage are discovered. The electrode reactions are resistive against low temperatures to render feasible working zinc-air batteries under sub-zero temperatures. The relatively reduced ionic conductivity of electrolyte is identified as the main limiting factor, which can be addressed by employing a CsOH-based electrolyte through regulating the solvation structures. Accordingly, 500 cycles with a stable voltage gap of 0.8 V at 5.0 mA cm-2 is achieved at -10 °C. This work reveals the promising potential of zinc-air batteries for low-temperature electrochemical energy storage and inspires advanced battery systems under extreme working conditions.

16.
Adv Mater ; 33(15): e2008606, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33656780

RESUMEN

Rechargeable zinc-air batteries constitute promising next-generation energy storage devices due to their intrinsic safety, low cost, and feasibility to realize high cycling current density and long cycling lifespan. Nevertheless, their cathodic reactions involving oxygen reduction and oxygen evolution are highly sluggish in kinetics, requiring high-performance noble-metal-free bifunctional electrocatalysts that exceed the current noble-metal-based benchmarks. Herein, a noble-metal-free bifunctional electrocatalyst is fabricated, which demonstrates ultrahigh bifunctional activity and renders excellent performance in rechargeable zinc-air batteries. Concretely, atomic Co-N-C and NiFe layered double hydroxides (LDHs) are respectively selected as oxygen reduction and evolution active sites and are further rationally integrated to afford the resultant CoNC@LDH composite electrocatalyst. The CoNC@LDH electrocatalyst exhibits remarkable bifunctional activity delivering an indicator ΔE of 0.63 V, far exceeding the noble-metal-based Pt/C+Ir/C benchmark (ΔE = 0.77 V) and most reported electrocatalysts. Correspondingly, ultralong lifespan (over 3600 cycles at 10 mA cm-2 ) and excellent rate performances (cycling current density at 100 mA cm-2 ) are achieved in rechargeable zinc-air batteries. This work highlights the current advances of bifunctional oxygen electrocatalysis and endows high-rate and long-cycling rechargeable zinc-air batteries for efficient sustainable energy storage.

17.
Ann Clin Biochem ; 58(3): 203-210, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33393354

RESUMEN

BACKGROUND: Sigma metrics are commonly used to evaluate laboratory management. In this study, we aimed to evaluate the analytical performance of cystatin C using sigma metrics and to develop an individualized quality control scheme for cystatin C concentrations. METHODS: Bias was calculated based on the samples used for the external quality assessment. The coefficient of variation was calculated using six months of internal quality control measurements at two levels, and desirable specification derived from biological variation was used as the quality goal. The sigma value for cystatin C was calculated using the above data. The internal quality control scheme and improvement measures were formulated according to the Westgard sigma standards for batch size and quality goal index. RESULTS: The sigma values for cystatin C, for quality control levels 1 and 2, were 3.04 and 4.95, respectively. The 13s/22s/R4s/41s/6x multirules (n = 6, R = 1), with a batch size of 45 patient samples, were selected as the internal quality control schemes for cystatin C. With different concentrations of cystatin C, the power function graph showed a probability for error detection of 94% and 100% and a probability for false rejection of 4% and 2%, respectively. According to the quality goal index of cystatin C, its precision needs to be improved. CONCLUSIONS: With a 'desirable' biological variation of 6.50%, the Westgard rule 13s/22s/R4s/41s/6x (n = 6, R = 1, batch size of 45) with high efficacy for determining the detection error is recommended for individualized quality control schemes of cystatin C.


Asunto(s)
Cistatina C/análisis , Gestión de la Calidad Total/métodos , Humanos , Laboratorios , Control de Calidad , Valores de Referencia
18.
Angew Chem Int Ed Engl ; 60(9): 4448-4463, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-32315106

RESUMEN

Single-atom catalysts (SACs) with highly active sites atomically dispersed on substrates exhibit unique advantages regarding maximum atomic efficiency, abundant chemical structures, and extraordinary catalytic performances for multiple important reactions. In particular, M-N-C SACs (M=transition metal atom) demonstrate optimal electrocatalytic activity for the oxygen reduction reaction (ORR) and have attracted extensive attention recently. Despite substantial efforts in fabricating various M-N-C SACs, the principles for regulating the intrinsic electrocatalytic activity of their active sites have not been sufficiently studied. In this Review, we summarize the regulation strategies for promoting the intrinsic electrocatalytic ORR activity of M-N-C SACs by modulation of the center metal atoms, the coordinated atoms, the environmental atoms, and the guest groups. Theoretical calculations and experimental investigations are both included to afford a comprehensive understanding of the structure-performance relationship. Finally, future directions of developing advanced M-N-C SACs for electrocatalytic ORR and other analogous reactions are proposed.

19.
Adv Mater ; 32(12): e1908488, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32072701

RESUMEN

The rechargeable zinc-air battery (ZAB) is a promising energy storage technology owing to its high energy density and safe aqueous electrolyte, but there is a significant performance bottleneck. Generally, cathode reactions only occur at multiphase interfaces, where the electrocatalytic active sites can participate in redox reactions effectively. In the conventional air cathode, the 2D multiphase interface on the surface of the gas diffusion layer (GDL) inevitably results in an insufficient amount of active sites and poor interfacial contact, leading to sluggish reaction kinetics. To address this problem, a 3D multiphase interface strategy is proposed to extend the reactive interface into the interior of the GDL. Based on this concept, an asymmetric air cathode is designed to increase the accessible active sites, accelerate mass transfer, and generate a dynamically stabilized reactive interface. With a NiFe layered-double-hydroxide electrocatalyst, ZABs based on the asymmetric cathode deliver a small charge/discharge voltage gap (0.81 V at 5.0 mA cm-2 ), a high power density, and a stable cyclability (over 2000 cycles). This 3D reactive interface strategy provides a feasible method for enhancing the air cathode kinetics and further enlightens electrode designs for energy devices involving multiphase electrochemical reactions.

20.
ChemSusChem ; 13(6): 1529-1536, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-31845530

RESUMEN

Rechargeable zinc-air batteries are considered as next-generation energy storage devices because of their ultrahigh theoretical energy density of 1086 Wh kg-1 (including oxygen) and inherent safety originating from the use of aqueous electrolyte. However, the cathode processes regarding oxygen reduction and evolution are sluggish in terms of kinetics, which severely limit the practical battery performances. Developing high-performance bifunctional oxygen electrocatalysts is of great significance, yet to achieve better bifunctional electrocatalytic reactivity beyond the state-of-the-art noble-metal-based electrocatalysts remains a great challenge. Herein, a composite Co3 O4 @POF (POF=framework porphyrin) bifunctional oxygen electrocatalyst is proposed to construct advanced air cathodes for high-performance rechargeable zinc-air batteries. The as-obtained composite Co3 O4 @POF electrocatalyst exhibits a bifunctional electrocatalytic reactivity of ΔE=0.74 V, which is better than the noble-metal-based Pt/C+Ir/C electrocatalyst and most of the reported bifunctional ORR/OER electrocatalysts. When applied in rechargeable zinc-air batteries, the Co3 O4 @POF cathode exhibits a reduced discharge-charge voltage gap of 1.0 V at 5.0 mA cm-2 , high power density of 222.2 mW cm-2 , and impressive cycling stability for more than 2000 cycles at 5.0 mA cm-2 .

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA