Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Biosens Bioelectron ; 252: 116151, 2024 May 15.
Article En | MEDLINE | ID: mdl-38402725

Perylene diimide (PDI) is a readily reducible electron-deficient dye that exhibits strong photoluminescent properties, providing new opportunities for synthesizing novel electrochemiluminescence (ECL) emitters. In this study, ethylene glycol (EG) was used to induce the self-assembly of PDI supramolecules for the preparation of ultrathin EG-PDI nanosheets characterized by low crystallinity and weak stacking interaction. Notably, EG-PDI integrates luminescent and catalytic functions into one device, accelerating the interfacial electron transfer and the faster charge transfer kinetics of EG-PDI with K2S2O8. Furthermore, the narrow band gap of EG-PDI facilitates its excitation at an ultra-low potential (-0.3 V). To improve the efficiency of tumor marker analysis, multifunctional Au nanostars (ANS) was introduced both as an energy acceptor of the ECL system and a probe for the photothermal system. Dual-mode immunoassay have demonstrated superior analytical performance in detecting alpha-fetoprotein (AFP), meeting the requirements of modern clinical diagnostics in resource-limited environments.


Biosensing Techniques , Imides , Perylene/analogs & derivatives , Immunoassay , Ethylene Glycols
2.
J Colloid Interface Sci ; 659: 728-738, 2024 Apr.
Article En | MEDLINE | ID: mdl-38211490

Luminol has garnered significant attention from analysts as one of the most effective and commonly used electrochemiluminescence (ECL) reagents. However, the efficient luminescence of luminol anode is limited by the excitation of various reactive oxygen species (ROS). Typically, ROS are generated through co-reactive reagents and dissolved oxygen. Unfortunately, the former suffers from two drawbacks, namely biotoxicity and instability, while the latter cannot offer sufficient oxygen due to its limited solubility in aqueous solutions. Consequently, a low decomposition rate is usually obtained, leading to insufficient ROS. Therefore, there is an urgent need to develop efficient luminol anode systems. This study focuses on the use of zeolitic imidazolate framework-67 (ZIF-67) as a template, employing a controlled chemical etching method to create a ZIF-67/Ni-Co-layered double hydroxide (LDH). The intermediate composite is then annealed in air, resulting in the formation of a Co3O4/NiCo2O4 double-shelled nanobox (DSNB) heterostructure. Due to its structural advantages, the DSNB exhibits excellent electrocatalytic performance in the oxygen evolution reaction (OER). Furthermore, it was found that both the intermediates and products of OER can directly participate in the luminol chemiluminescence process, ultimately resulting in a 700-fold increase in the electrochemiluminescence (ECL) signal compared to an equal molar concentration of luminol solution. This work not only establishes the OER-mediated ECL system but also deepens the understanding of the relationship between ROS and luminol, providing a new pathway to study the luminol anodic ECL luminescence system.

3.
Small ; : e2310476, 2024 Jan 28.
Article En | MEDLINE | ID: mdl-38282388

In recent years, carbon nitride (CN) has attracted substantial attention in the field of electrochemiluminescence (ECL) applications, owing to its outstanding optical and electronic properties. However, the passivation of CN during the ECL process has contributed to reduced stability and poor repeatability. While some studies have tried to boost ECL performance by altering CN through doping and vacancies, effectively suppressing CN passivation at high potentials continues to be challenge. In this study, the built-in electric field and the Schottky barrier effect is used to expedite the transfer of electrons from CN to the molybdenum disulfide (MoS2 ) conduction band. This transfer deterred excessive electron injection into the CN band, thus mitigating its electrochemical degradation. Moreover, by introducing nickel nanoparticles (Ni NPs) as catalytic active sites, it is facilitated that the decomposition of potassium persulfate (K2 S2 O8 ), thereby enhancing both the stability and intensity of ECL emission. In the end, the application of ternary heterostructure as sensing platform for the cancer biomarker carcinoembryonic antigen (CEA) demonstrated high sensitivity. This research introduces a novel approach to overcome CN passivation, paving the way for more promising applications of CN in energy, environmental, and biosensing fields.

4.
Small ; 20(11): e2306473, 2024 Mar.
Article En | MEDLINE | ID: mdl-37926790

Conventional luminol co-reactant electrochemiluminescence (ECL) systems suffer from low stability and accuracy due to factors such as the ease of decomposition of hydrogen peroxide and inefficient generation of reactive oxygen species (ROS) from dissolved oxygen. Inspired by the luminol ECL mechanism mediated by oxygen evolution reaction (OER), the nickel-cobalt layered double hydroxide (NiCo-LDH) hollow nanocages with hollow structure and defect state are used as co-reaction promoters to enhance the ECL emission from the luminol-H2 O system. Thanks to the hollow structure and defect state, NiCo-LDH hollow nanocages show excellent OER catalytic activity, which can stabilize and efficiently produce ROS and enhance the ECL emission. Additionally, mechanistic exploration suggests that the ROS involved in the co-reaction of the luminol-H2 O system are derived from the OER reaction process, and there is a positive correlation between ECL intensity and the OER catalytic activity of the co-reaction promoter. The selection of catalysts with excellent OER catalytic activity is a key factor in improving ECL emission. Finally, a dual-mode immunosensor is constructed for the detection and analysis of alpha-fetoprotein (AFP) based on the promoting effect of NiCo-LDH hollow nanocages on the luminol-H2 O ECL system.

5.
Bioelectrochemistry ; 156: 108626, 2024 Apr.
Article En | MEDLINE | ID: mdl-38128442

By combining two different materials, metal-organic frameworks (MOF) and ß-cyclodextrins (ß-CD), a signal amplification electrochemical luminescence (ECL) immunosensor was constructed to realize the sensitive detection of AFP. The indium-based metal-organic framework (In-MOF) was used as the carrier of Ru(bpy)32+, and Ru(bpy)32+ was immobilized by In-MOF through suitable pore size and electrostatic interaction. At the same time, using host-guest recognition, ß-CD enriched TPA into the hydrophobic cavity for accelerating the electronic excitation of TPA, then, achieving the purpose of signal amplification. The signal amplification immunosensor structure is constructed among the primary antibody Ab1 connected to the Ru(bpy)32+@In-MOF modified electrode, AFP, BSA and the secondary antibody (Ab2) loaded with TPA-ß-CD. The immunosensor has a good linearity in the range of 10-5 ng/mL-50 ng/mL, and the low limit of detection (LOD) is 1.1 × 10-6 ng/mL. In addition, the electrochemiluminescence immunosensor that we designed has strong stability, good selectivity and repeatability, which provides a choice for the analysis of AFP.


Biosensing Techniques , Metal Nanoparticles , Metal-Organic Frameworks , beta-Cyclodextrins , Metal Nanoparticles/chemistry , alpha-Fetoproteins , Luminescent Measurements , Immunoassay , Limit of Detection , Metal-Organic Frameworks/chemistry , Electrochemical Techniques
6.
Anal Chem ; 95(44): 16225-16233, 2023 11 07.
Article En | MEDLINE | ID: mdl-37877873

Compared with the accuracy of a single signal and the limitation of environmental applicability, the application value of dual-mode detection is gradually increasing. To this end, based on the photothermal effect of Ag/Co embedded N-rich mesoporous carbon nanomaterials (AgCo@NC NPs), we designed a dual-mode signal response system for the detection of α-fetoprotein (AFP). First, AgCo@NC NPs act as a photothermal immunoprobe that converts light energy into heat driven by a near-infrared (NIR) laser and obtains temperature changes corresponding to the analyte concentration on a hand-held thermal imager. In addition, this temperature recognition system can significantly improve the efficiency of Fenton-like reactions. AgCo@NC NPs act as peroxidase mimics to initiate the generation of poly N-isopropylacrylamide (PNIPAM, resistance enhancer) by cascade catalysis and the degradation of methylene blue (MB), thus enabling electrochemical testing. The dual-mode assay ranges from 0.01 to 100 and 0.001-10 ng/mL, with lower limits of detection (LOD) of 3.2 and 0.089 pg/mL, respectively, and combines visualization, portability, and high efficiency, opening new avenues for future clinical diagnostics and inhibitor studies.


Nanostructures , alpha-Fetoproteins , Light
7.
Anal Chem ; 95(33): 12459-12469, 2023 Aug 22.
Article En | MEDLINE | ID: mdl-37566460

To sensitively monitor trace amounts of alternariol (AOH) in fruits, a dual-mode aptamer sensor utilizing the dual-function nanomaterial PoPD/Ru-Au was developed. This sensor provides both electrochemical (EC) and electrochemiluminescence (ECL) signals, which can greatly avoid the potential false positive of the traditional single signal, thus enhancing the accuracy and reliability of detection results. Polyo-phenylenediamine (PoPD), known for its favorable EC response, can also assist in enhancing the ECL behavior of Ru-Au. Furthermore, Ru-Au demonstrates excellent ECL performance and effectively activates K2S2O8 to amplify the EC response of PoPD. The complementary effect of the two can effectively amplify the final detection signal. Additionally, the PoPD/Ru-Au nanomaterial exhibits excellent electrical conductivity, further enhancing the EC and ECL response signals. The experimental results demonstrate that the EC detection range of AOH was 0.01-100 ng/mL, while the ECL detection range was 0.001-100 ng/mL, both exhibiting a satisfactory linear relationship. Therefore, the mutual verification of the detection results can be highly realized, and the purpose of avoiding wrong detection can be achieved.

8.
J Colloid Interface Sci ; 645: 997-1004, 2023 Sep.
Article En | MEDLINE | ID: mdl-37183158

The improvement of electrochemiluminescence (ECL) intensity in luminol, a classic electrochemiluminescent material, remains a controversial topic. In this study, synthesis of acetylene black oxide (ACETO) through simple air annealing was successful in introducing oxygen-containing groups and defects, which can act as active sites for the oxygen reduction reaction (ORR) and exhibit excellent catalytic activity. By introducing the two-electron (2e-) ORR into the cathode ECL system of luminol, integration of ACETO and luminol allows for in situ generation of dissolved oxygen into reactive oxygen species (ROS), thereby enhancing the ECL intensity of luminol. It is worth noting that iron-nitrogen-carbon (FeNC), as a secondary antibody (Ab2) label, can catalyze the decomposition of H2O2, the product of 2e- ORR, into ROS to achieve ECL amplification. Alpha-fetoprotein (AFP), an important tumor marker, was successfully detected with a detection limit of 0.01 pg/mL, indicating that this ECL signal amplification strategy has broad application prospects in biological analysis.


Biosensing Techniques , Metal Nanoparticles , Luminol/chemistry , Hydrogen Peroxide , Reactive Oxygen Species , Temperature , Metal Nanoparticles/chemistry , Luminescent Measurements , Electrochemical Techniques , Electrodes , Limit of Detection , Alkynes
9.
Talanta ; 261: 124669, 2023 Aug 15.
Article En | MEDLINE | ID: mdl-37210917

Alpha-fetoprotein (AFP) is the best diagnostic marker for hepatocellular carcinoma (HCC) and plays an important role in the general surveillance of the population. Therefore, the establishment of an ultra-sensitive AFP assay is essential for the early screening and clinical diagnosis of HCC. In this work, we designed a signal-off biosensor for ultra-sensitive detection of AFP based on an electrochemiluminescent resonance energy transfer (ECL-RET) strategy using luminol intercalated layered bimetallic hydroxide (Luminol-LDH) as an ECL donor and Pt nanoparticles-grown on copper sulfide nanospheres (CuS@Pt) as ECL acceptor. The (Au NPs/Luminol-LDH)n multilayer nanomembrane synthesized by our intercalation and layer-by-layer electrostatic assembly process not only effectively immobilizes luminol but also significantly enhances the ECL signal. The CuS@Pt composite has well visible light absorption ability and can burst the light emitted from luminol by ECL-RET. The biosensor showed good linearity in the range from 10-5 ng mL-1 to 100 ng mL-1 and a minimum detection limit of 2.6 fg mL-1. Therefore, the biosensor provides a novel and efficient strategy for the detection of AFP, which is important for the early screening and clinical diagnosis of HCC.


Biosensing Techniques , Carcinoma, Hepatocellular , Liver Neoplasms , Metal Nanoparticles , Humans , Luminol , alpha-Fetoproteins , Carcinoma, Hepatocellular/diagnosis , Liver Neoplasms/diagnosis , Luminescent Measurements , Energy Transfer , Electrochemical Techniques , Limit of Detection , Gold
10.
Anal Chem ; 95(18): 7109-7117, 2023 05 09.
Article En | MEDLINE | ID: mdl-37098252

In this paper, a novel donor-acceptor pair was creatively proposed based on the principle of electrochemiluminescence resonance energy transfer (ECL-RET): luminol immobilized on polyethyleneimine (PEI)-functionalized manganese-based single-atom nanozymes (Mn SANE/PEI-luminol, donor) and a PtCu-grafted hollow metal polydopamine framework (PtCu/h-MPF, acceptor). A quenched ECL immunosensor was constructed for the ultrasensitive analysis of carcinoembryonic antigen (CEA). Mn SANE, as an efficient novel coreaction accelerator with the outstanding performance of significantly activating H2O2 to produce large amounts of ROS, was further modified by the coreactant PEI, which efficiently immobilized luminol to form a self-enhanced emitter. As a result, the electron transport distance was effectively shortened, the energy loss was reduced, and luminol achieved a high ECL efficiency. More importantly, PtCu-grafted h-MPF (PtCu/h-MPF) was proposed as a novel quencher. The UV-vis spectra of PtCu/h-MPF partially overlap with the ECL spectra of Mn SANE/PEI-luminol, which can effectively trigger the ECL-RET behavior between the donor and the acceptor. The multiple quenching effect on Mn SANE/PEI-luminol was achieved, which significantly improved the sensitivity of the immunosensor. The prepared immunosensor exhibited good linearity in the concentration range of 10-5 to 80 ng/mL. The results indicate that this work provides a new method for the early detection of CEA in clinical diagnosis.


Biosensing Techniques , Metal Nanoparticles , Luminol , Carcinoembryonic Antigen/analysis , Polyethyleneimine , Biosensing Techniques/methods , Hydrogen Peroxide , Electrochemical Techniques/methods , Luminescent Measurements/methods , Immunoassay/methods , Limit of Detection
11.
Anal Chim Acta ; 1257: 341143, 2023 May 29.
Article En | MEDLINE | ID: mdl-37062562

Effective signal amplification is a prerequisite for ultrasensitive detection by electrochemical immunosensors. For quantitative and ultrasensitive detection of alpha-fetoprotein (AFP), we designed a competitive electrochemical immunosensor and transferred the immunoreactivity from the electrode surface to the cuvette. AFP antigen was captured using AFP primary antibody (Ab1) immobilized on magnetic nanobeads (MBs), and ZIF-8 nanomaterials attached to secondary antibody (Ab2) were used as probes. MBs helped retain the sandwich structure in the test tube through incubation and washing steps. Then, an appropriately fixed excess of sodium ethylenediaminetetraacetic acid (EDTA) solution was added to the cuvettes, resulting in etching of Zn ions from ZIF-8 and formation of Zn-EDTA complexes. After magnetic separation, a certain amount of supernatant is added dropwise to the Prussian blue (PB)-modified electrode (GCE), and Fe ions (from PB) complex with the remaining EDTA in the supernatant, thus reducing the signal response value of PB. The higher the AFP concentration, the lower the amount of free EDTA in the supernatant, the less the destruction of PB, and therefore the higher the current. Under optimal conditions, the immunosensor achieved ultra-sensitive detection of AFP in the range of 10-4 ng/mL-100 ng/mL with a limit of detection (LOD) as low as 0.032 pg/mL (S/N = 3). The excellent performance provides an important tool for the early screening and detection of AFP.


Biosensing Techniques , Metal Nanoparticles , alpha-Fetoproteins , Biosensing Techniques/methods , Edetic Acid , Immunoassay/methods , Limit of Detection , Electrochemical Techniques/methods , Gold/chemistry , Metal Nanoparticles/chemistry
12.
Bioelectrochemistry ; 146: 108131, 2022 Aug.
Article En | MEDLINE | ID: mdl-35405364

In electrochemical immunoassays, great breakthroughs have been made in ultrasensitive detection of tumor markers by amplifying signals with coreaction accelerators. Herein, carbon nitrides with nitrogen vacancies (CNNVs) are proposed as emitter, due to the introduction of nitrogen vacancies this emitter has better ECL efficiency, the phenomena of interface electron transfer and electrode passivation are improved. At the same time, it can also promote the electrochemical reduction of coreactant, making it an attractive and potential emitter. The electrode was modified with Ag-Ti3C2 MXene. It not only accelerates electron transfer and increases the effective working area of the electrode, but also acts as a coreaction accelerator to promote the electrochemical reduction of the coreactant K2S2O8, resulting in a strong ECL signal. The immunosensor showed a good linear relationship in the range of 10-5-100 ng/mL with a detection limit of 0.36 fg/mL. In addition, the excellent properties of good specificity and ultra-high stability provide an effective method for ultra-sensitive immunoassays.


Biosensing Techniques , Metal Nanoparticles , Biosensing Techniques/methods , Electrochemical Techniques/methods , Immunoassay , Limit of Detection , Luminescent Measurements/methods , Metal Nanoparticles/chemistry , Nitrogen , Titanium
13.
Bioelectrochemistry ; 142: 107931, 2021 Dec.
Article En | MEDLINE | ID: mdl-34455230

Effective signal amplification is a prerequisite for electrochemical immunosensors to achieve ultra-sensitive detection. In this work, we prepared a sandwich-type electrochemical immunosensor for the quantitative detection of carcinoembryonic antigen (CEA). As a base platform, Ag NPs modified aminated two-dimensional nitrogen carbide nanosheets (Ag/g-C3N4) have good biocompatibility and conductivity. In addition, with the layered structure of Au@SiO2/Cu2O as the signal label, the response current value of H2O2 was monitored by the Amperometric i-t Curve (i-t), so as to realize the accurate measurement of CEA. The presence of SiO2 nanoframes not only reduces the agglomeration of Au NPs and Cu2O but also provides good biocompatibility to facilitate the connection of secondary antibodies. Finally, we also verified the signal amplification mechanism of the immunosensor through XPS and other means, and calculated the kinetic parameters of the signal tag, which proved the good peroxidase-like activity of Au@SiO2/Cu2O. Under the best test conditions, the prepared immunosensor has a detection range from 0.01 pg/mL to 80 ng/mL, and the detection limit is as low as 0.0038 pg/mL. The results show that the immunosensor has good analytical performance and it can provide a new method for the clinical diagnosis of CEA.


Antibodies, Immobilized/chemistry , Biosensing Techniques/methods , Carcinoembryonic Antigen/blood , Electrochemical Techniques/methods , Metal Nanoparticles/chemistry , Humans , Immunoassay/methods
14.
ACS Biomater Sci Eng ; 7(3): 1058-1064, 2021 03 08.
Article En | MEDLINE | ID: mdl-33617216

The morphology effect of cerium oxide (CeO2) has always been the focus of catalysis research. Few people have reported the relationship between the morphology of CeO2 and electrochemical performance in sensors. In this paper, a polyaniline (PANI) matrix is used as the dispersant and stabilizer, ultrafine Au nanoparticles (NPs) (Au@PANI) are uniformly embedded in the PANI matrix, and Au NPs@PANI is fixed on the surface of CeO2 with different morphologies and sizes (Spindle CeO2:(SCe), octahedron CeO2 (OCe)). The morphology and crystal structure of CeO2 were adjusted under different ratios of ethanol and water, and the effect of CeO2 was evaluated. The synthesized CeO2-Au@PANI has different morphologies, sizes, and electrochemical properties. The electrochemical catalytic behavior of CeO2-Au@PANI was studied by using hydrogen peroxide (H2O2) as the reaction substrate. The instantaneous current method (I-T) was used to further study the electrochemical amplification effect, and the best performance was obtained.


Biosensing Techniques , Metal Nanoparticles , Electrochemical Techniques , Gold , Humans , Hydrogen Peroxide , Immunoassay
15.
Bioelectrochemistry ; 132: 107434, 2020 Apr.
Article En | MEDLINE | ID: mdl-31821901

In this study, a novel signal-amplified immunosensor was designed by using a microwave-assisted self-assembly method to synthesize ZnFe2O4-Ag/rGO nanocomposites. The conductivity of ZnFe2O4-rGO nanocomposites was significantly improved due to the effective inhibition of rGO accumulation by the insertion of ZnFe2O4 and Ag nanoparticles (NPs) into graphene sheets. Excellent sensitivity and reproducibility were achieved through the microwave-assisted preparation of ZnFe2O4-Ag/rGO nanocomposites as a substrate, with the Ag NPs enhancing the signal because of the effective conductive matrix. The layer assembly process of the immunosensor was verified by cyclic voltammetry and electrochemical impedance spectroscopy. Under optimal conditions, the fabricated immunosensor showed good linearity over a wide concentration range from 1 pg mL-1 to 200 ng mL-1 with a low detection limit of 0.98 pg mL-1, and exhibited excellent specificity, good stability, and reproducibility. These qualities can contribute to the successful application of a label-free immunosensor in the detection of AFP in human serum.


Ferric Compounds/chemistry , Graphite/chemistry , Metal Nanoparticles/chemistry , Microwaves , Silver/chemistry , Zinc Compounds/chemistry , alpha-Fetoproteins/analysis , Humans , Limit of Detection
16.
Anal Chim Acta ; 1088: 54-62, 2019 Dec 11.
Article En | MEDLINE | ID: mdl-31623716

Effective treatment of cancer depends on early detection of tumor markers. In this paper, an effective template-free method was used to prepare CoS2@C three-dimensional hollow sheet nanotubes as the matrix of the immunosensor. The unique three-dimensional hybrid hollow tubular nanostructure provides greater contact area and enhanced detection limit. The CoS2@C-NH2-HRP nanomaterial was synthesized as a marker and had a high specific surface area, which can effectively improve the electrocatalytic ability of hydrogen peroxide (H2O2) reduction while increasing the amount of capture-fixed carcinoembryonic antigen antibody (anti-CEA). In addition, the co-bonded horseradish peroxidase (HRP) can further promote the redox of H2O2 and amplify the electrical signal. Carcinoembryonic antigen (CEA) was quantified by immediate current response (i-t), and the prepared immunosensor had good analytical performance under optimized conditions. The current signal and the concentration of CEA were linear in the range of 0.001-80 ng/mL, and the detection limit was 0.33 pg/mL (S/N = 3). The designed immunosensor has good selectivity, repeatability and stability, and the detection of human serum samples shows good performance. Furthermore, electrochemical immunosensor has broad application prospects in the clinical diagnosis of CEA.

...