Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
In Vivo ; 37(1): 320-328, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36593025

RESUMEN

BACKGROUND/AIM: The aim of this study was the conception, production, material analysis and cytocompatibility analysis of a new collagen foam for medical applications. MATERIALS AND METHODS: After the innovative production of various collagen sponges from bovine sources, the foams were analyzed ex vivo in terms of their structure (including pore size) and in vitro in terms of cytocompatibility according to EN ISO 10993-5/-12. In vitro, the collagen foams were compared with the established biomaterials cerabone and Jason membrane. Materials cerabone and Jason membrane. RESULTS: Collagen foams with different compositions were successfully produced from bovine sources. Ex vivo, the foams showed a stable and long-lasting primary structure quality with a bubble area of 1,000 to 2,000 µm2 In vitro, all foams showed sufficient cytocompatibility. CONCLUSION: Collagen sponges represent a promising material for hard and soft tissue regeneration. Future studies could focus on integrating and investigating different additives in the foams.


Asunto(s)
Materiales Biocompatibles , Colágeno , Animales , Bovinos , Hidroxiapatitas
2.
In Vivo ; 35(5): 2541-2549, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34410941

RESUMEN

BACKGROUND/AIM: The aim of this study was the conception, production, material analysis and cytocompatibility analysis of a new collagen foam for medical applications. MATERIALS AND METHODS: After the innovative production of various collagen sponges from bovine sources, the foams were analyzed ex vivo in terms of their structure (including pore size) and in vitro in terms of cytocompatibility according to EN ISO 10993-5/-12. In vitro, the collagen foams were compared with the established soft and hard tissue materials cerabone and Jason membrane (both botiss biomaterials GmbH, Zossen, Germany). RESULTS: Collagen foams with different compositions were successfully produced from bovine sources. Ex vivo, the foams showed a stable and long-lasting primary structure quality with a bubble area of 1,000 to 2,000 µm2 In vitro, all foams showed sufficient cytocompatibility. CONCLUSION: Collagen sponges represent a promising material for hard and soft tissue regeneration. Future studies could focus on integrating and investigating different additives in the foams.


Asunto(s)
Materiales Biocompatibles , Colágeno , Animales , Bovinos , Alemania , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA