Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
1.
J Colloid Interface Sci ; 676: 139-148, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39024814

RESUMEN

A promising method of producing hydrogen peroxide (H2O2) is the electrochemical two-electron water oxidation reaction (2e- WOR). In this process, it is important to design electrocatalysts that are both earth abundant and environmentally friendly, as well as offering high stability and production rates. The research of WOR catalysts, such as the extensively used transition metal oxides, is mainly focused on the modification of transition metal elements. Few studies pay attention to the protective heterostructure of metal oxides. Here, we demonstrate for the first time an organometallic skeleton protection strategy to develop highly stable WOR catalysts for H2O2 generation. Unlike the pure ZnO and zeolite imidazole framework-8 (ZIF-8) catalysts, ZnO@ZIF-8 enabled the production of hydrogen peroxide at high voltages. The experimental results demonstrate that the ZnO@ZIF-8 catalyst stably generates H2O2 even under a high voltage of 3.0 V vs. RHE, with a yield reaching 2845.819 µmolmin-1 g-1. ZnO@ZIF-8 shows a relatively low overpotential, with a current density of 10 mA cm-2 and an overpotential of 110 mV. The ZnO@ZIF-8 catalyst's maximal FE value was 4.72 %. Moreover, the ZnO@ZIF-8 catalyst exhibits remarkable durability even after an extended 60-hour stability test. Operando Raman and theoretic calculation analyses reveal that the metal-organic skeleton being encapsulated on the metal oxide surface synergizes with each other, not only expanding the electrochemical surface area, but also adjusting the catalyst metal sites' adsorption capacity. A novel approach to the modification of 2e- WOR metal oxide catalyst is presented in this work.

2.
Org Lett ; 26(28): 5905-5910, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38980194

RESUMEN

Herein, we present a straightforward approach to access hydroindoline-5-one-based 6/5/3-fused polycyclic ring structures through multistep cascade reactions involving α-aryl vinylsulfoniums and para-quinamines. The reactions proceed smoothly under mild conditions to deliver the desired products in generally good isolated yields. This protocol is also applicable to the cascade cycloaddition reactions of α-aryl vinylsulfoniums and para-quinols, effectively generating complex tricyclic scaffolds. In addition, the scale-up synthesis and further derivatizations demonstrate the potential synthetic application of the protocol.

3.
Molecules ; 29(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38893357

RESUMEN

Quinone imines are important derivatives of quinones with a wide range of applications in organic synthesis and the pharmaceutical industry. The attack of nucleophilic reagents on quinone imines tends to lead to aromatization of the quinone skeleton, resulting in both the high reactivity and the unique reactivity of quinone imines. The extreme value of quinone imines in the construction of nitrogen- or oxygen-containing heterocycles has attracted widespread attention, and remarkable advances have been reported recently. This review provides an overview of the application of quinone imines in the synthesis of cyclic compounds via the domino annulation reaction.

5.
J Org Chem ; 89(12): 8363-8375, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38848119

RESUMEN

Palladium-catalyzed decarboxylation of 5-methylene-1,3-oxazinan-2-ones and 5-methylene-1,3-dioxan-2-ones to generate aza-π-allylpalladium and oxa-π-allylpalladium 1,4-dipoles for [4 + 2] cycloaddition reaction with 1,3,5-triazinanes was developed, affording a wide range of hexahydropyrimidine and 1,3-oxazinane derivatives in good to excellent yields (up to 99%). The acyclic sulfonamido-substituted allylic carbonates as aza-π-allylpalladium 1,4-dipole precursors also apply to the developed synthesized strategy, achieving the synthesis of hexahydropyrimidines. Moreover, the in situ-generated aza-π-allylpalladium 1,4-dipoles undergoing dimeric [4 + 4] cycloaddition were also demonstrated by the construction of 1,5-diazocane derivatives.

6.
Cardiovasc Diabetol ; 23(1): 121, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581024

RESUMEN

BACKGROUND: This study investigates the relationship between triglyceride-glucose (TyG) index trajectories and the results of ablation in patients with stage 3D atrial fibrillation (AF). METHODS: A retrospective cohort study was carried out on patients who underwent AF Radiofrequency Catheter Ablation (RFCA) at the Cardiology Department of the Fourth Affiliated Hospital of Zhejiang University and Taizhou Hospital of Zhejiang Province from January 2016 to December 2022. The main clinical endpoint was determined as the occurrence of atrial arrhythmia for at least 30 s following a 3-month period after ablation. Using a latent class trajectory model, different trajectory groups were identified based on TyG levels. The relationship between TyG trajectory and the outcome of AF recurrence in patients was assessed through Kaplan-Meier survival curve analysis and multivariable Cox proportional hazards regression model. RESULTS: The study included 997 participants, with an average age of 63.21 ± 9.84 years, of whom 630 were males (63.19%). The mean follow-up period for the participants was 30.43 ± 17.75 months, during which 200 individuals experienced AF recurrence. Utilizing the minimum Bayesian Information Criterion (BIC) and the maximum Entropy principle, TyG levels post-AF RFCA were divided into three groups: Locus 1 low-low group (n = 791), Locus 2 low-high-low group (n = 14), and Locus 3 high-high group (n = 192). Significant differences in survival rates among the different trajectories were observed through the Kaplan-Meier curve (P < 0.001). Multivariate Cox regression analysis showed a significant association between baseline TyG level and AF recurrence outcomes (HR = 1.255, 95% CI: 1.087-1.448). Patients with TyG levels above 9.37 had a higher risk of adverse outcomes compared to those with levels below 8.67 (HR = 2.056, 95% CI: 1.335-3.166). Furthermore, individuals in Locus 3 had a higher incidence of outcomes compared to those in Locus 1 (HR = 1.580, 95% CI: 1.146-2). CONCLUSION: The TyG trajectories in patients with stage 3D AF are significantly linked to the outcomes of AF recurrence. Continuous monitoring of TyG levels during follow-up may help in identifying patients at high risk of AF recurrence, enabling the early application of effective interventions.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Masculino , Humanos , Persona de Mediana Edad , Anciano , Femenino , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/cirugía , Fibrilación Atrial/etiología , Estudios Retrospectivos , Teorema de Bayes , Resultado del Tratamiento , Factores de Riesgo , Ablación por Catéter/efectos adversos , Ablación por Catéter/métodos , Recurrencia
7.
Org Lett ; 26(15): 3310-3315, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38587335

RESUMEN

A catalyst system consisting of a chiral phosphoramidite ligand and Pd2(dba)3·CHCl3 causes the decarboxylation of 5-vinyloxazolidine-2,4-diones to generate amide-containing aza-π-allylpalladium 1,3-dipole intermediates, which are capable of triggering the dearomatization of 3-nitroindoles for diastereo- and enantioselective [3+2] cycloaddition, leading to the formation of a series of highly functionalized pyrroloindolines containing three contiguous stereogenic centers with excellent results (up to 99% yield, 88:12 dr, and 96% ee).

8.
Environ Sci Pollut Res Int ; 31(19): 28803-28813, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38564127

RESUMEN

Microbial nitrate reduction processes involve two competing pathways: denitrification (DEN) and dissimilatory nitrate reduction to ammonium (DNRA). This study investigated the distribution of DNRA in a sole sulfur-driven nitrogen conversion process using a laboratory-scale sequencing biofilm batch reactor (SBBR) through a series of batch tests with varying sulfide/nitrate (S/N) ratios. The results showed that DNRA became more dominant in the sulfide-oxidizing autotrophic denitrification (SOAD) process as the S/N ratio increased to 1.5:1, 1.7:1, and 2:1, reaching a peak of 35.3% at the S/N ratio of 1.5:1. Oxidation-reduction potential (ORP) patterns demonstrated distinct inflection points for nitrate and nitrite consumption under the SOAD-only conditions, whereas these points overlapped when DNRA coexisted with SOAD. Analysis of 16S ribosomal RNA identified Ignavibacterium, Hydrogenophaga, and Geobacter as the dominant genera responsible for DNRA during autotrophic nitrate reduction. The findings of the DNRA divergence investigation provided valuable insights into enhancing biological nitrogen removal processes, particularly when coupled with the anammox.


Asunto(s)
Desnitrificación , Nitratos , Oxidación-Reducción , Sulfuros , Nitratos/metabolismo , Reactores Biológicos , Compuestos de Amonio/metabolismo , ARN Ribosómico 16S , Nitrógeno
9.
Nucl Med Commun ; 45(7): 612-621, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38686487

RESUMEN

OBJECTIVE: The objective of this study is to evaluate the effectiveness of 68 Ga-FAPI-04 PET/computed tomography (CT) for the diagnosis of primary and metastatic gastric cancer and colorectal cancer lesions as compared with 18 F-FDG PET/CT. MATERIALS AND METHODS: Fifty-nine patients who underwent both 18 F-FDG and 68 Ga-FAPI-04 for initial staging or restaging were enrolled. Histopathological findings and clinical imaging follow-up were used as the reference standard. The diagnostic performance and TNM staging of the two tracers were calculated and compared. The maximum standardized uptake value (SUV max ), tumour-to-mediastinal blood pool ratio (TBR) (lesions SUV max /ascending aorta SUV mean ), and tumour-to-normal liver parenchyma ratio (TLR) (lesions SUV max /liver SUV mean ) of primary and metastatic lesions between two imaging modalities were measured and compared using the Wilcoxon signed-rank test and paired t -test. RESULTS: The two imaging agents are comparable for the detection of primary tumors. The sensitivity of 68 Ga-FAPI-04 PET/CT was higher than that of 18 F-FDG PET/CT for detecting lymph node metastases, peritoneal metastases, liver metastases, and bone metastases. In the patient-based analysis, the TLR for all lesions was significantly higher with 68 Ga-FAPI-04 PET/CT than with 18 F-FDG PET/CT (all P  < 0.05). The accuracy (92.2 vs. 70.3%, P  = 0.002) and sensitivity of 68 Ga-FAPI-04 were significantly higher than that of 18 F-FDG (78.6 vs. 71.4%, P  = 0.011) in determining the lymph node status. 68 Ga-FAPI-04 has a higher accuracy in staging ( P  = 0.041), which is mainly due to the ability of distant metastases detection. CONCLUSION: 68 Ga-FAPI-04 PET/CT may be superior in evaluating the diagnostic efficiency and staging accuracy of gastric and colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Fluorodesoxiglucosa F18 , Estadificación de Neoplasias , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias Gástricas , Humanos , Masculino , Femenino , Neoplasias Gástricas/diagnóstico por imagen , Neoplasias Gástricas/patología , Persona de Mediana Edad , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/patología , Anciano , Adulto , Anciano de 80 o más Años , Compuestos Organometálicos , Quinolinas
10.
Molecules ; 29(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38474676

RESUMEN

An efficient dearomative (3 + 2) cycloaddition of para-quinamines and 2-nitrobenzofurans has been developed. This reaction proceeds smoothly under mild conditions and affords a series of benzofuro[3,2-b]indol-3-one derivatives in good to excellent yields (up to 98%) with perfect diastereoselectivities (all cases > 20:1 dr). The scale-up synthesis and versatile derivatizations demonstrate the potential synthetic application of the protocol. A plausible reaction mechanism is also proposed to account for the observed reaction process. This work represents the first instance of the N-triggered dearomative (3 + 2) cycloaddition of 2-nitrobenzofurans.

11.
Org Lett ; 26(13): 2623-2628, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38522081

RESUMEN

An efficient dearomative cyclization of 2-nitrobenzofurans via a thiol-triggered tandem Michael addition/intramolecular Henry reaction has been developed. A range of thiochromeno[3,2-b]benzofuran-11-ols and tetrahydrothieno[3,2-b]benzofuran-3-ols could be obtained in up to 99% yield and up to >20:1 dr. The valuable thiochromone fused benzofurans could be prepared with the reaction of 2-nitrobenzofurans and 2-mercaptobenzaldehyde via the tandem dearomative Michael addition/intramolecular Henry reaction/rearomatization/oxidative dehydrogenation process in a one-pot two-step operation. A mechanism for the reaction was tentatively proposed.

12.
iScience ; 27(4): 109431, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38523778

RESUMEN

This study investigates the relationship and genetic mechanisms of liver and heart diseases, focusing on the liver-heart axis (LHA) as a fundamental biological basis. Through genome-wide association study analysis, we explore shared genes and pathways related to LHA. Shared genetic factors are found in 8 out of 20 pairs, indicating genetic correlations. The analysis reveals 53 loci with pleiotropic effects, including 8 loci exhibiting shared causality across multiple traits. Based on SNP-p level tissue-specific multi-marker analysis of genomic annotation (MAGMA) analysis demonstrates significant enrichment of pleiotropy in liver and heart diseases within different cardiovascular tissues and female reproductive appendages. Gene-specific MAGMA analysis identifies 343 pleiotropic genes associated with various traits; these genes show tissue-specific enrichment primarily in the liver, cardiovascular system, and other tissues. Shared risk loci between immune cells and both liver and cardiovascular diseases are also discovered. Mendelian randomization analyses provide support for causal relationships among the investigated trait pairs.

13.
Food Chem Toxicol ; 187: 114550, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38467300

RESUMEN

BACKGROUND: The effect of human 8-Oxoguanine DNA Glycosylase (hOGG1) on exogenous chemicals in esophageal squamous cell carcinoma (ESCC) remain unclear. The study plans to determine hOGG1 expression levels in ESCC and possible interactions with known environmental risk factors in ESCC. MATERIAL AND METHODS: We analyzed levels of exposure to urinary nitrosamines in volunteers from high and low prevalence areas by GC-MS. And we performed the interaction between hOGG1 gene and nitrosamine disinfection by-products by analyzing hOGG1 gene expression in esophageal tissues. RESULTS: In ESCC, nitrosamine levels were significantly increased and hOGG1 mRNA expression levels were significantly decreased. There was a statistically significant interaction between reduced hOGG1 mRNA levels and non-tap drinking water sources in ESCC. The apparent indirect association between ESCC and NMEA indicated that 33.4% of the association between ESCC and NMEA was mediated by hOGG1. CONCLUSION: In populations which exposed to high levels of environmental pollutants NDMA, low expression of hOGG1 may promote the high incidence of esophageal cancer in Huai'an. hOGG1 may be a novel mediator in nitrosamine-induced esophageal tumorigenesis.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Nitrosaminas , Humanos , Neoplasias Esofágicas/inducido químicamente , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/inducido químicamente , Carcinoma de Células Escamosas de Esófago/complicaciones , Nitrosaminas/toxicidad , Transformación Celular Neoplásica , ARN Mensajero
14.
Front Microbiol ; 15: 1257405, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38298896

RESUMEN

Background: Recent research linked changes in the gut microbiota and serum metabolite concentrations to intracerebral hemorrhage (ICH). However, the potential causal relationship remained unclear. Therefore, the current study aims to estimate the effects of genetically predicted causality between gut microbiota, serum metabolites, and ICH. Methods: Summary data from genome-wide association studies (GWAS) of gut microbiota, serum metabolites, and ICH were obtained separately. Gut microbiota GWAS (N = 18,340) were acquired from the MiBioGen study, serum metabolites GWAS (N = 7,824) from the TwinsUK and KORA studies, and GWAS summary-level data for ICH from the FinnGen R9 (ICH, 3,749 cases; 339,914 controls). A two-sample Mendelian randomization (MR) study was conducted to explore the causal effects between gut microbiota, serum metabolites, and ICH. The random-effects inverse variance-weighted (IVW) MR analyses were performed as the primary results, together with a series of sensitivity analyses to assess the robustness of the results. Besides, a reverse MR was conducted to evaluate the possibility of reverse causation. To validate the relevant findings, we further selected data from the UK Biobank for analysis. Results: MR analysis results revealed a nominal association (p < 0.05) between 17 gut microbial taxa, 31 serum metabolites, and ICH. Among gut microbiota, the higher level of genus Eubacterium xylanophilum (odds ratio (OR): 1.327, 95% confidence interval (CI):1.154-1.526; Bonferroni-corrected p = 7.28 × 10-5) retained a strong causal relationship with a higher risk of ICH after the Bonferroni corrected test. Concurrently, the genus Senegalimassilia (OR: 0.843, 95% CI: 0.778-0.915; Bonferroni-corrected p = 4.10 × 10-5) was associated with lower ICH risk. Moreover, after Bonferroni correction, only two serum metabolites remained out of the initial 31 serum metabolites. One of the serum metabolites, Isovalerate (OR: 7.130, 95% CI: 2.648-19.199; Bonferroni-corrected p = 1.01 × 10-4) showed a very strong causal relationship with a higher risk of ICH, whereas the other metabolite was unidentified and excluded from further analysis. Various sensitivity analyses yielded similar results, with no heterogeneity or directional pleiotropy observed. Conclusion: This two-sample MR study revealed the significant influence of gut microbiota and serum metabolites on the risk of ICH. The specific bacterial taxa and metabolites engaged in ICH development were identified. Further research is required in the future to delve deeper into the mechanisms behind these findings.

15.
Org Lett ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385527

RESUMEN

The first direct catalytic asymmetric Mannich reaction of 2-alkylazaarenes and ketimines was realized with a chiral Cu-bis(oxazoline) complex as the catalyst. The asymmetric addition of 2-alkylpyridines to isatin-derived ketimines proceeded smoothly to afford α,ß-functionalized 2-substituted pyridines bearing 3-amino-3,3-disubstituted oxindole motifs with excellent results (≤99% yield, 99:1 dr, and 98% ee). The catalytic system was also extended to 2-alkylbenzothiazoles as nucleophiles for the asymmetric Mannich reaction of ketimines.

16.
Org Lett ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385803

RESUMEN

This study demonstrates a highly efficient regiodivergent ligand-controlled palladium-catalyzed cycloaddition reaction of vinyloxazolidine-2,4-diones with 1,3,5-triazinanes. In the presence of a diphosphine ligand, the reaction proceeds via a (5+2) cycloaddition pathway to afford 1,3-diazepin-4-ones in excellent yields, while using a monophosphine ligand, the reaction proceeds smoothly via a (3+2) cycloaddition pathway to give imidazolidin-4-ones in good yields.

17.
Molecules ; 28(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38067627

RESUMEN

α-Substituted-7-azaindoline amides and α,ß-unsaturated 7-azaindoline amides have emerged as new versatile synthons for various metal-catalyzed and organic-catalyzed asymmetric reactions, which have attracted much attention from chemists. In this review, the progress of research on 7-azaindoline amides in the asymmetric aldol reaction, the Mannich reaction, the conjugate addition, the 1,3-dipole cycloaddition, the Michael/aldol cascade reaction, aminomethylation and the Michael addition-initiated ring-closure reaction is discussed. The α-substituted-7-azaindoline amides, as nucleophiles, are classified according to the type of α-substituted group, whereas the α,ß-unsaturated 7-azaindoline amides, as electrophiles, are classified according to the type of reaction.

18.
J Am Chem Soc ; 145(50): 27728-27739, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38055725

RESUMEN

Rational design and regulation of atomically precise photocatalysts are essential for constructing efficient photocatalytic systems tunable at both the atomic and molecular levels. Herein, we propose a platform-based strategy capable of integrating both pore space partition (PSP) and open-metal sites (OMSs) as foundational features for constructing high-performance photocatalysts. We demonstrate the first structural prototype obtained from this strategy: pore-partitioned NiTCPE-pstp (TCPE = 1,1,2,2-tetra(4-carboxylphenyl)ethylene, pstp = partitioned stp topology). Nonpartitioned NiTCPE-stp is constructed from six-connected [Ni3(µ3-OH)(COO)6] trimer and TCPE linker to form 1D hexagonal channels with six coplanar OMSs directed at channel centers. After introducing triangular pore-partitioning ligands, half of the OMSs were retained, while the other half were used for PSP, leading to unprecedented microenvironment regulation of the pore structure. The resulting material integrates multiple advanced properties, including robustness, wider absorption range, enhanced electronic conductivity, and high CO2 adsorption, all of which are highly desirable for photocatalytic applications. Remarkably, NiTCPE-pstp exhibits excellent CO2 photoreduction activity with a high CO generation rate of 3353.6 µmol g-1 h-1 and nearly 100% selectivity. Theoretical and experimental studies show that the introduction of partitioning ligands not only optimizes the electronic structure to promote the separation and transfer of photogenerated carriers but also reduces the energy barrier for the formation of *COOH intermediates while promoting CO2 activation and CO desorption. This work is believed to be the first example to integrate PSP strategies and OMSs within metal-organic framework (MOF) photocatalysts, which provides new insight as well as new structural prototype for the design and performance optimization of MOF-based photocatalysts.

19.
Org Lett ; 25(51): 9191-9196, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38114417

RESUMEN

Herein, we report an unprecedented implementation of 3-halooxindoles as C-C-O three-atom components for (3+3) cycloaddition with pyridinium 1,4-zwitterionic thiolates, affording structurally diverse indolenine-fused 2H-1,4-oxathiines in moderate to high yields. A combined experimental and computational mechanistic study suggests that the reaction proceeds through addition of a S conjugate to the o-azaxylylene intermediate, followed by O-Michael addition and a sequential retro-Michael addition/pyridine extrusion pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA