Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 81
1.
Food Funct ; 2024 May 24.
Article En | MEDLINE | ID: mdl-38787648

Phospholipids are the essential components of human milk, contributing to the enhancement of cognitive development, regulation of immune functions, and mitigation of elevated cholesterol levels. Infant formulas supplemented with phospholipids can change the composition, content, and globule membrane structure of milk lipids, improving their digestive properties and nutritional value. However, mimicking phospholipids in infant formulas is currently limited, and the supplemented standards of phospholipid species and amounts in infant formulas are unknown. Consequently, there is a significant difference between the phospholipids in infant formulas and those in human milk. This article reviews the recent progress in human milk phospholipid research, aiming to describe the composition, content, and positive effects of human milk phospholipids, as well as summarises the dietary sources of phospholipid supplementation and the current state of human milk phospholipid mimicking in infant formulas. This review provides clear directions for research on mimicking human milk phospholipids and evaluating the nutritional functions of phospholipids in infants.

2.
Food Chem X ; 22: 101433, 2024 Jun 30.
Article En | MEDLINE | ID: mdl-38764784

In triacylglycerols (TAGs), position differences of fatty acids on the glycerol skeleton produce various TAG isomers. These TAG isomers have different pathways of digestion, absorption, and utilization in infants, thereby affecting TAG nutritional properties of TAGs. Here, we review the progress of research on methods for detecting TAG isomers, and identify direction and thought for improving these methods, including novel chromatographic combinations, perfect algorithm, and improved equipment. The ensuing optimization of these methods is expected to provide robust guarantee for the gradual improvement of milk-derived TAG isomer detection, and is an important prerequisite for infant formula to mimic the structured lipids of human milk.

3.
Front Microbiol ; 15: 1402654, 2024.
Article En | MEDLINE | ID: mdl-38812695

Introduction: Folate supplementation is crucial for the human body, and the chemically synthesized folic acid might have undesirable side effects. The use of molecular breeding methods to modify the genes related to the biosynthesis of folate by probiotics to increase folate production is currently a focus of research. Methods: In this study, the folate-producing strain of Limosilactobacillus reuteri B1-28 was isolated from human breast milk, and the difference between B1-28 and folA gene deletion strain ΔFolA was investigated by phenotyping, in vitro probiotic evaluation, metabolism and transcriptome analysis. Results: The results showed that the folate producted by the ΔFolA was 2-3 folds that of the B1-28. Scanning electron microscope showed that ΔFolA had rougher surface, and the acid-producing capacity (p = 0.0008) and adhesion properties (p = 0.0096) were significantly enhanced than B1-28. Transcriptomic analysis revealed that differentially expressed genes were mainly involved in three pathways, among which the biosynthesis of ribosome and aminoacyl-tRNA occurred in the key metabolic pathways. Metabolomics analysis showed that folA affected 5 metabolic pathways, involving 89 different metabolites. Discussion: In conclusion, the editing of a key gene of folA in folate biosynthesis pathway provides a feasible pathway to improve folate biosynthesis in breast milk-derived probiotics.

4.
Animals (Basel) ; 14(9)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38731324

Bartonella is an intracellular parasitic zoonotic pathogen that can infect animals and cause a variety of human diseases. This study investigates Bartonella prevalence in small mammals in Yunnan Province, China, focusing on tissue tropism. A total of 333 small mammals were sampled from thirteen species, three orders, four families, and four genera in Heqing and Gongshan Counties. Conventional PCR and real-time quantitative PCR (qPCR) were utilized for detection and quantification, followed by bioinformatic analysis of obtained DNA sequences. Results show a 31.5% detection rate, varying across species. Notably, Apodemus chevrieri, Eothenomys eleusis, Niviventer fulvescens, Rattus tanezumi, Episoriculus leucops, Anourosorex squamipes, and Ochotona Thibetana exhibited infection rates of 44.4%, 27.7%, 100.0%, 6.3%, 60.0%, 23.5%, and 22.2%, respectively. Genetic analysis identified thirty, ten, and five strains based on ssrA, rpoB, and gltA genes, with nucleotide identities ranging from 92.1% to 100.0%. Bartonella strains were assigned to B. grahamii, B. rochalimae, B. sendai, B. koshimizu, B. phoceensis, B. taylorii, and a new species identified in Episoriculus leucops (GS136). Analysis of the different tissues naturally infected by Bartonella species revealed varied copy numbers across different tissues, with the highest load in spleen tissue. These findings underscore Bartonella's diverse species and host range in Yunnan Province, highlighting the presence of extensive tissue tropism in Bartonella species naturally infecting small mammalian tissues.

5.
Foods ; 13(8)2024 Apr 21.
Article En | MEDLINE | ID: mdl-38672945

Yellowhorn (Xanthoceras sorbifolium Bunge) is a unique oilseed tree in China with high edible and medicinal value. However, the application potential of yellowhorn has not been adequately explored. In this study, widely targeted metabolomics (HPLC-MS/MS and GC-MS) and network pharmacology were applied to investigate the nutritional potential of yellowhorn leaves and flowers. The widely targeted metabolomics results suggested that the yellowhorn leaf contains 948 non-volatile metabolites and 638 volatile metabolites, while the yellowhorn flower contains 976 and 636, respectively. A non-volatile metabolite analysis revealed that yellowhorn leaves and flowers contain a variety of functional components beneficial to the human body, such as terpenoids, flavonoids, alkaloids, lignans and coumarins, phenolic acids, amino acids, and nucleotides. An analysis of volatile metabolites indicated that the combined action of various volatile compounds, such as 2-furanmethanol, ß-icon, and 2-methyl-3-furanthiol, provides the special flavor of yellowhorn leaves and flowers. A network pharmacology analysis showed that various components in the flowers and leaves of yellowhorn have a wide range of biological activities. This study deepens our understanding of the non-volatile and volatile metabolites in yellowhorn and provides a theoretical basis and data support for the whole resource application of yellowhorn.

6.
Food Chem ; 447: 138991, 2024 Jul 30.
Article En | MEDLINE | ID: mdl-38520905

Human milk, which contains various nutrients, is the "gold standard" for infant nutrition. Healthy human milk meets all the nutritional needs of early infant development. Polar lipids mainly exist in the milk fat globule membrane, accounting for approximately 1-2% of human milk lipids; sphingomyelin (SM) accounts for approximately 21-24% of polar lipids. SM plays an important role in promoting the development of the brain and nervous system, regulating intestinal flora, and improving skin barriers. Though SM could be synthesized de novo, SM nutrition from dietary is also important for infants. The content and composition of SM in human milk has been reported, however, the molecular mechanisms of nutritional functions of SM for infants required further research. This review summarizes the functional mechanisms, metabolic pathways, and compositional, influencing factors, and mimicking of SM in human milk, and highlights the challenges of improving maternal and infant early/long-term nutrition.


Milk, Human , Sphingomyelins , Infant , Child , Humans , Diet , Nutritional Status , Infant Nutritional Physiological Phenomena
7.
Front Public Health ; 12: 1309068, 2024.
Article En | MEDLINE | ID: mdl-38525331

Background: Roe was overturned in 2022. No peer-reviewed evidence exists for the indirect spillover effects of overturning Roe on non-abortion reproductive care access for diverse patient populations. Methods: National data were from 2013-2023 HHS Title X Directory, 2013-2020 CDC Artificial Reproductive Technologies (ART) Surveillance and 2021-2023 manual collection, and Guttmacher Institute. Outcome measures included numbers of ART clinics and Title X entities. Title X entities are those that receive federal funds to establish and operate voluntary family planning projects, especially for low-income patients. We reported pre-and post-Roe changes, associations between changes in measures and abortions, and characteristics of changed measures by region and political geography. Results: Post-Roe America witnessed national declines of 1.03% in ART clinics and 18.34% in Title X entities, and average state decreases of 0.08 ART clinics (p < 0.05) and 18 Title X entities (p < 0.001). State-level ART clinic closures and abortion reductions had little association except for Texas, Oklahoma, Arizona, New York, and California. Plummets in Title X entities and abortions were positively associated: Reducing 100 abortions was associated with defunding two Title X entities (p < 0.05). The South experienced the largest losses of both, while 83.39% of lost Title X entities were in states that voted Republican in the 2020 presidential election, disproportionate to the 49.02% of states that voted Republican and the 42.52% of US population residing in these states. Conclusion: We provide one of the first few evidence of spillover impacts of overturning Roe on non-abortion care access for diverse populations: low-income men and women, single parents by choice, and biologically and socially infertile patients. Early evidence warns of worsening challenges of inequities and calls for immediate policy actions.


Abortion, Induced , Pregnancy , Male , Female , Humans , Family Planning Services , Americas , Texas , Politics
8.
Food Chem ; 444: 138623, 2024 Jun 30.
Article En | MEDLINE | ID: mdl-38309081

The introduction of exogenous lipids in the production of infant formula induces significant alterations in milk lipid composition, content, and membrane structure, thus affecting the lipid digestion, absorption, and utilization. This study meticulously tracks these changes throughout the manufacturing process. Pasteurization has a significant effect on phosphatidylcholine and sphingomyelin in the outer membrane, decreasing their relative contents to total polar lipids from 12.52% and 17.34% to 7.72% and 12.59%, respectively. Subsequent processes, including bactericidal-concentration and spray-drying, demonstrate the thermal stability of sphingomyelin and ceramides, while glycerolipids with arachidonic acid/docosahexaenoic acid and glycerophospholipids, particularly phosphatidylethanolamine, diminish significantly. Polar lipids addition and freeze-drying technology significantly enhance the polar lipid content and improve microscopic morphology of infant formula. These findings reveal the diverse effects of technological processes on glycerolipid and polar lipid compositions, concentration, and ultrastructure in infant formulas, thus offering crucial insights for optimizing lipid content and structure within infant formula.


Infant Formula , Sphingomyelins , Humans , Infant , Animals , Infant Formula/chemistry , Sphingomyelins/analysis , Milk/chemistry , Docosahexaenoic Acids/analysis , Arachidonic Acid , Milk, Human/chemistry
9.
Food Funct ; 15(3): 1417-1430, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38224157

This study investigated the non-inferiority of feeding term healthy infants with enriched formula milk powder containing 1,3-dioleoyl-2-palmitoylglycerol (OPO) and milk fat globular membrane (MFGM), compared to breast milk, in terms of the formation of gut microbiota, neurodevelopment and growth. Infants were divided into three groups: breast milk group (BMG, N = 50), fortified formula group (FFG, N = 17), and regular formula group (RFG, N = 12), based on the feeding pattern. Growth and development information was collected from the infants at one month, four months, and six months after the intervention. Fecal samples were collected from infants and analyzed for gut microbiota using 16S ribosomal DNA identification. The study found that at the three time points, the predominant bacterial phyla in FFG and BMG were Proteobacteria, Firmicutes, and Bacteroidetes, which differed from RFG. The abundance of Bifidobacterium in the RFG was lower than the FFG (one month, p = 0.019) and BMG (four months, p = 0.007). The abundance of Methanoprebacteria and so on (genus level) are positively correlated with bone mineral density (BMD) of term infants, and have the potential to be biomarkers for predicting BMD. The abundance of beta-galactosidase, a protein that regulates lactose metabolism and sphingoid metabolism, was higher in FFG (six months, p = 0.0033) and BMG (one month, p = 0.0089; four months, p = 0.0005; six months, p = 0.0005) than in the RFG group, which may be related to the superior bone mineral density and neurodevelopment of infants in the FFG and BMG groups than in the RFG group. Our findings suggest that formula milk powder supplemented with OPO and MFGM is a viable alternative to breastfeeding, providing a practical alternative for infants who cannot be breastfed for various reasons.


Breast Feeding , Gastrointestinal Microbiome , Infant , Female , Humans , Powders , Infant Formula , Milk, Human , Feces/microbiology
10.
Heliyon ; 9(11): e21611, 2023 Nov.
Article En | MEDLINE | ID: mdl-38027638

The important parameters affecting the nutritional properties of lipids were analyzed and compared between human milk (HM), infant formulas (IFs), mammalian milk, and substitute fat, including molecular species, fatty acid composition, glyceride content, and important structural triacylglycerols (TAGs). The molecular species of triacylglycerols with functional fatty acids were significantly different between HM and IFs, and their contents in HM were significantly higher than those in IFs. Accordingly, the evaluation scores of fatty acid composition and glyceride content in IFs were less than 50 compared to HM. Although the introduction of vegetable oils effectively improved the unsaturation of IF lipid, the excessive addition of TAGs rich in oleic and linoleic acid resulted in an imbalance of TAG composition and structure. Only 36.84 % of IFs were supplemented with structured lipids, but those still lacked sn-2 palmitate TAGs. The adoption of multiple lipids and novel processing technologies is required for novel IFs to match the composition, content, positional structure and spherical membrane structure of HM as closely as possible.

11.
Viruses ; 15(9)2023 09 20.
Article En | MEDLINE | ID: mdl-37766371

The genetic diversity of coronaviruses (CoVs) is high, and their infection in animals has not yet been fully revealed. By RT-PCR detection of the partial RNA-dependent RNA polymerase (RdRp) gene of CoVs, we screened a total of 502 small mammals in the Dali and Nujiang prefectures of Western Yunnan Province, China. The number of overall CoV positives was 20, including ß-CoV (n = 13) and α-CoV (n = 7), with a 3.98% prevalence in rectal tissue samples. The identity of the partial RdRp genes obtained for 13 strains of ß-CoV was 83.42-99.23% at the nucleotide level, and it is worth noting that the two strains from Kachin red-backed voles showed high identity to BOV-36/IND/2015 from Indian bovines and DcCoV-HKU23 from dromedary camels (Camelus dromedarius) in Morocco; the nucleotide identity was between 97.86 and 98.33%. Similarly, the identity of the seven strains of α-CoV among the partial RdRp sequences was 94.00-99.18% at nucleotide levels. The viral load in different tissues was measured by quantitative RT-PCR (qRT-PCR). The average CoV viral load in small mammalian rectal tissue was 1.35 × 106 copies/g; differently, the mean CoV viral load in liver, heart, lung, spleen, and kidney tissue was from 0.97 × 103 to 3.95 × 103 copies/g, which revealed that CoV has extensive tropism in rectal tissue in small mammals (p < 0.0001). These results revealed the genetic diversity, epidemiology, and infective tropism of α-CoV and ß-CoV in small mammals from Dali and Nujiang, which deepens the comprehension of the retention and infection of coronavirus in natural hosts.


Coronavirus Infections , Coronavirus , Animals , Cattle , Betacoronavirus , China/epidemiology , Mammals , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Arvicolinae , Camelus , Nucleotides , RNA-Dependent RNA Polymerase
12.
Food Chem ; 415: 135762, 2023 Jul 30.
Article En | MEDLINE | ID: mdl-36870206

Phospholipids play key roles in infant nutrition and cognitive development. It is hypothesized that infant formula (IF) has lower phospholipid species, content and milk fat globule (MFG) structural integrity than human milk (HM). Herein, we performed qualitative and quantitative analyses of phospholipids in six classes of IF and HM using ultra-performance liquid chromatography with mass spectrometry. The contents of phosphatidylethanolamine (15.81 ± 7.20 mg/L) and sphingomyelin (35.84 ± 15.56 mg/L) in IF were significantly lower than those in HM (30.74 ± 17.38 mg/L, 45.53 ± 16.04 mg/L, respectively). Among the six IF classes, cow's milk-based IF had the highest number of phospholipid species, and IF containing milk fat globular membrane had the highest phospholipid content. The size, zeta potential, and amount of MFGs in IF were significantly lower than those in HM. These results may prove useful for designing better IF that mimic HM.


Milk, Human , Phospholipids , Female , Animals , Cattle , Humans , Infant , Milk, Human/chemistry , Phospholipids/chemistry , Infant Formula/chemistry , Glycolipids/chemistry , Lipid Droplets/chemistry
13.
Infect Drug Resist ; 16: 791-797, 2023.
Article En | MEDLINE | ID: mdl-36779045

Background: Aspergillosis is an uncommon fungal infection in which primary cutaneous sites are very rare, and most cases occur in patients with immunocompromised status. Although primary cutaneous aspergillosis is usually encountered in immunocompromised patients, it also occurs in immunocompetent individuals. Case Presentation: We report a case of primary cutaneous aspergillosis in a 46-year-old immunocompetent woman with diabetes mellitus after tattooing. She presented with erythematous papules, papulopustules and a plaque on the right lower limb of more than two years duration which had failed to respond to antihistamine treatment. Histological examination of a skin biopsy sample showed oval spores in the corneous layer, a slightly thickened epidermis, and infiltrating lymphocytes and neutrophils around the blood vessels in the superficial dermis. Aspergillus fumigatus was isolated and identified in cultures. Clinical and biological examinations did not reveal any systemic localization of aspergillosis, ruling out a hypothesis of blood dissemination. Lesions resolved completely after systemic antifungal treatment with itraconazole. Conclusion: Clinical lesions of primary cutaneous aspergillosis are nonspecific and usually present as a variety of lesions, including macules, papules, nodules, plaques, purpura, blood blisters, and pustules. The nonspecific features and variety of lesions can lead to misdiagnosis and delayed treatment. Direct microscopy, microbiological culture, and histopathological examination are helpful for diagnosing primary cutaneous aspergillosis. Moreover, the physicians should be aware of the possibility of Aspergillus infection in tattooed cases.

14.
Environ Int ; 172: 107747, 2023 02.
Article En | MEDLINE | ID: mdl-36693298

It is unknown how anthropogenic pollutants released into freshwater ecosystems affect the assembly processes of microbial communities in river sediment. We used high-throughput sequencing to examine the assembly of rare and abundant subcommunities in a heavily polluted urban river: the Beiyun River in Beijing, China. Although deterministic processes overrode stochastic processes in shaping local rare and abundant subcommunities, there were distinctly different assembly mechanisms of rare and abundant subcommunities. Rare subcommunity assembly was governed more by interspecificinteractions, and environmental selection and dispersal limitation explained only a small fraction of the variation. However, both factors seemed to govern the assembly of abundant subcommunities. Our results implied that microbial co-occurrence associations tended to be higher when rare subcommunities were less driven by community assembly, and that these associations tended to be lower when abundant subcommunities were more driven by community assembly. A balance between the community assembly and species coexistence was exhibited atthesubcommunitylevel. Importantly, we tried to disentangle the assembly process of abundant subcommunities into introduction and colonization processes characterized by the presence/absence and relative abundance datasets. Interestingly, metals explained the highest percentage of spatial variation in the species introduction process. By affecting nutrient availability, metals also shaped the abundant subcommunity in the species colonization process, but this did not surpass nutrient availability. Therefore, disentangling the introduction and colonization processes enhances our understanding of the assembly mechanisms of microbial communities in heavily polluted running water ecosystems at fine geographical scales.


Microbiota , Rivers , Geography , China , Beijing
15.
BMC Microbiol ; 23(1): 24, 2023 01 21.
Article En | MEDLINE | ID: mdl-36681800

BACKGROUND: Biological phenotypes are important characteristics of microorganisms, and often reflect their genotype and genotype changes. Traditionally, Trichophyton rubrum (T. rubrum) phenotypes were detected using carbon source assimilation tests, during which the types of tested substances are limited. In addition, the operation is complicated, and only one substance can be tested at once. To observe the changes of the metabolic phenotype of T. rubrum after laser irradiation, a high-throughput phenotype microarray system was used to analyze the metabolism of different carbon, nitrogen, phosphorus and sulfur source substrates in a Biolog metabolic phenotyping system. RESULTS: The strain of T. rubrum used in this study can effectively utilize 33 carbon, 20 nitrogen, 16 phosphorus, and 13 sulfur source substrates prior to laser irradiation. After laser irradiation, the strain was able to utilize 10 carbon, 12 nitrogen, 12 phosphorus, and 8 sulfur source substrates. The degree of utilization was significantly decreased compared with the control. Both groups efficiently utilized saccharides and organic acids as carbon sources as well as some amino acids as nitrogen sources for growth. The number of substrates utilized by T. rubrum after laser irradiation were significantly reduced, especially carbon substrates. Some substrates utilization degree in the laser treated group was higher than control, such as D-glucosamine, L-glutamine, D-2-Phospho-Glyceric Acid, D-glucosamine-6-phosphate, and D-methionine. CONCLUSION: Laser irradiation of T. rubrum may lead to changes in the metabolic substrate and metabolic pathway, thus weakening the activity of the strain.


Lasers , Trichophyton , Trichophyton/genetics , Trichophyton/radiation effects , Phenotype , Phosphorus , Sulfur
16.
Genes Genomics ; 45(2): 231-245, 2023 Feb.
Article En | MEDLINE | ID: mdl-35819623

BACKGROUND: MicroRNAs (miRNAs) are about 21 snucleotide (nt) long, non-coding RNAs that play an important role in plant abiotic stress responses. Chinese jujube is a native fruit tree in China, which is also an admittedly drought-resistant plant. But the drought-related miRNAs have little been reported in jujube. OBJECTIVE: To identify possibly drought-responsive microRNAs and their target genes in Chinese Jujube. METHODS: Twelve small RNA libraries were constructed from two jujube genotypes both drought treated and control samples with three replicates to identify known and novel miRNAs in Chinese Jujube, DESeq2 was used to identify expression pattern of miRNAs between drought treatment and control samples, TargetFinder program was used to predict potential target genes of conserved and novel miRNAs, RT-qPCR were used to analysis the expression levels of drought-related miRNAs and their potential targets. The RNA ligase-mediated RLM-5' RACE experiments were performed to validate predicted target genes of drought-related miRNAs. RESULTS: 43 known miRNAs and 431 novel miRNAs were identified in Chinese jujube. Expression analysis showed that 28 miRNAs were differential expressed under drought stress in jujube variety "Dongzao", including 21 up-regulated miRNAs and 7 down-regulated miRNAs, 61 miRNAs were differential expressed under drought stress in Chinese jujube variety "Zanhuangdazao", including 23 up-regulated miRNAs and 37 down-regulated miRNAs. Depend on miRNAs target prediction, functional annotation and expression analysis, we identified 9 drought-related miRNAs, and 7 target genes of 6 miRNAs were confirmed using the modified 5'-RACE method. Also, RT-qPCR analyses revealed that relative expression of those miRNAs and their targets have negative tendency. CONCLUSION: We identified 6 drought-related miRNAs by high-throughout sequencing and target gene annotation from Chinese jujube, and targets of those miRNAs were confirmed by the modified 5'-RACE method. These findings provide molecular evidence for enhancing drought tolerance in Chinese jujube and other plants.


MicroRNAs , Ziziphus , Droughts , High-Throughput Nucleotide Sequencing , MicroRNAs/genetics , MicroRNAs/metabolism , Ziziphus/genetics , Ziziphus/metabolism
17.
Ecotoxicol Environ Saf ; 249: 114402, 2023 Jan 01.
Article En | MEDLINE | ID: mdl-36516624

Excessive application of fertilizers has caused a high load of phosphorus (P) in the North China Plain. The fate of P and its effects on aquatic ecosystems depend on its chemical speciation in soils. However, few studies systematically investigated the transport and retardation of different P species in the fluvo-aquic soil. In this study, the transport of inorganic P (orthophosphate, PO4), organic P (phytic acid, PA) and particulate P (hydroxyapatite nanoparticles, nHAP) in the fluvo-aquic soil were investigated by column experiments, and their retardation from major soil components such as kaolin, CaCO3, Al2O3, and goethite (GT) was also investigated by monitoring breakthrough curves and fitting transport models. The transport of P species in fluvo-aquic soil followed the order of PO4 > PA > nHAP. A high fraction of increased clay and mineral particle-associated P (P-E) was observed for PO4 and PA; while significant Ca-associated P (P-Ca) for nHAP. Under the experimental conditions, both CaCO3 and GT were the most influential factors for PO4, PA, and nHAP retention. Goethite strongly inhibited PO4 transport due to its high PO4 adsorption capacity, while CaCO3 strongly inhibited PA transport due to its strong association with PA under alkaline conditions. Both CaCO3 and GT can severely inhibit nHAP transport due to the favorable electrostatic conditions as well as the Ca2+ bridging effect. These results indicated that CaCO3 played a key role in regulating the retention of organic P and particulate P in the calcareous soil, and also suggested the important role of Fe (hydr)oxides in controlling the transport of inorganic P, which could out-compete that of CaCO3.


Phosphorus , Soil , Ecosystem , Durapatite
18.
Front Microbiol ; 13: 1031758, 2022.
Article En | MEDLINE | ID: mdl-36466673

The gestation period is critical for the health of the mother and fetus. Malnutrition or over nutrition during pregnancy may cause gestational diseases that can result in adverse pregnancy outcomes. Fecal microbiota transplantation (FMT) can be used to re-establish new gut microbiota to treat a variety of diseases and construct a model to investigate the nutritional health during pregnancy. Therefore, this study investigated whether human-derived gut microbiota during pregnancy could colonize the intestines of mice. Moreover, we determined the time and method of intervention for FMT. Based on this information, a humanized mouse model of FMT was constructed to simulate the human intestinal microecology during pregnancy, and serve as a useful animal model for the study of nutritional health and disease during pregnancy. Germ-free (GF) and specific pathogen free (SPF) C57BL/6J mice were selected for humanized gestational FMT and the transplantation outcomes were evaluated. The results demonstrated that the gestational intestinal microbiota colonized the intestines of mice, allowing researchers to construct a humanized mouse model of gestational FMT. The main intestinal flora of the gestational period were transplanted into GF mice, with the gestational flora being similar to the flora of GF mice after transplantation. However, antibiotics could not eliminate the original microbial flora in SPF mice, and the flora was complex and variable after FMT with little increase in abundance. Background flora had a significant impact on the outcomes assessment. The results were better in GF mice than in SPF mice, and after microbiota transplantation, a superior effect was observed on day 21 compared to days 7 and 14.

19.
BMC Microbiol ; 22(1): 307, 2022 12 19.
Article En | MEDLINE | ID: mdl-36536292

BACKGROUND: According to the results of the clinical trials, laser therapy is effective for the treatment of onychomycosis, but the in vitro findings are inconsistent among studies. This study aimed to explore the experimental conditions of laser for the inhibition of Trichophyton rubrum growth in vitro. A 1064-nm neodymium-doped yttrium aluminum garnet (Nd:YAG) laser was used to irradiate colonies using a small (6-mm diameter) or large (13-mm diameter) area, and using 300, 408, or 600 J/cm2. The surface temperature of the colony was measured after irradiation and every 2 min. The growth area was calculated until the 7th or 10th day of incubation daily. RESULTS: For the small area group, at 300 J/cm2, the immediate surface temperature was 25.2 ± 0.2°C, but without effect on growth (P = 0.516). At 408 J/cm2, the immediate surface temperature was 32.0 ± 0.4°C; growth was inhibited for 7 days (P < 0.001). At 600 J/cm2, the immediate surface temperature was 38.1 ± 0.4°C; the growth was completely stopped for at least 10 days (P < 0.001). For the large area group, the temperature patterns were similar to those of the small area group, but the highest temperature was lower than in the small area groups, and no growth inhibition effect was observed (all P > 0.05). CONCLUSIONS: When the irradiation area is small, a 1064-nm Nd:YAG laser at 408 or 600 J/cm2 can be effective in suppressing T. rubrum growth in vitro.


Arthrodermataceae , Lasers, Solid-State , Onychomycosis , Trichophyton/radiation effects , Onychomycosis/therapy , Lasers, Solid-State/therapeutic use
20.
Front Microbiol ; 13: 1016759, 2022.
Article En | MEDLINE | ID: mdl-36439858

Human breast milk (HBM) plays an important role in providing nutrients, beneficial microorganisms and bioactive components for infants, helping maturation of their immune system and gastrointestinal development. Here, we present a study aiming to investigate the diversity and temporal dynamics of the milk microbiome across the first 6 month postpartum in Chinese healthy breastfeeding women, and to investigate to what extent other variables (e.g., sampling location, infant sex, and mode of delivery) might also be related to variations in the human milk microbiome, and the association with maternal diet and nutrients. Fifty-three healthy pregnant women from four cities were recruited from a China Maternal and Infant Health Cohort Study and breast milk samples were collected and analyzed using 16S rRNA metagenomic sequencing. We illustrated the diversity and temporal dynamics during lactation (Adonis p-value = 3e-04). Firmicutes and Proteobacteria were the most abundant phyla, and Streptococcus, Staphylococcus, Serratia, and Corynebacterium were the core genera. Partitioning around medoids clustering identified two major internal clusters of breast milk microbiota. Cluster 1 was dominated by Acinetobacter and Pseudomonas, while Cluster 2 was dominated by Streptococcus and Staphylococcus. Among other environmental variables, sampling location showed significant influence on breast milk microbiome (Adonis p-value = 4e-04), while infant sex (Adonis p-value = 0.33) and mode of delivery (Adonis p-value = 0.19) were less related to variations in the human milk microbiome. Maternal diet such as tuber was significantly correlated with the relative abundance of Neisseria (rho = 0.34, adjusted p-value = 0.01) and Cutibacterium (rho = -0.35, adjusted p-value = 0.01), and nutrients such as carbohydrates were significantly correlated with the relative abundance of Aquabacterium (rho = -0.39, adjusted p-value = 0.0027), and vitamin B12 was significantly correlated with the relative abundance of Coprococcus (rho = 0.40, adjusted p-value = 0.0018), etc. These results illustrated the dynamic changes of composition and diversity during the lactation phases of the Chinese breast milk microbiome and addressed the importance of geographic location on milk microbiota, and associations with maternal diet consumption, which have potential benefits on the establishment and future health of breastfeeding infants.

...