Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
Chemosphere ; 359: 142324, 2024 Jul.
Article En | MEDLINE | ID: mdl-38740339

Seawater warming, ocean acidification and chemical pollution are the main threats to coral growth and even survival. The legacy persistent organic contaminants (POCs), such as polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), and the emerging contaminants, including polybrominated diphenyl ethers (PBDEs), dechlorane plus (DPs) and novel brominated flame retardants (NBFRs) were studied in corals from Luhuitou fringing reef in Sanya Bay and Yongle atoll in Xisha Islands, the South China Sea (SCS). Total average concentrations of ∑16PAHs, ∑23OCPs, ∑34PCBs, ∑8PBDEs, ∑2DPs and ∑5NBFRs in 20 coral species (43 samples) from the SCS were 40.7 ± 34.6, 5.20 ± 5.10, 0.197 ± 0.159, 3.30 ± 3.70, 0.041 ± 0.042 and 36.4 ± 112 ng g-1 dw, respectively. PAHs and NBFRs were the most abundant compounds and they are likely to be dangerous pollutants for future coral growth. Compared to those found in other coral reef regions, these pollutants concentrations in corals were at low to median levels. Except for PBDEs, POCs in massive Porites were significantly higher than those in branch Acropora and Pocillopora (p < 0.01), as large, closely packed corals may be beneficial for retaining more pollutant. The current study contributes valuable data on POCs, particularly for halogenated flame retardants (HFRs, including PBDEs, DPs and NBFRs), in corals from the SCS, and will improve our knowledge of the occurrence and fate of these pollutants in coral reef ecosystems.


Anthozoa , Environmental Monitoring , Flame Retardants , Halogenated Diphenyl Ethers , Hydrocarbons, Chlorinated , Persistent Organic Pollutants , Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Seawater , Water Pollutants, Chemical , Animals , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , China , Halogenated Diphenyl Ethers/analysis , Flame Retardants/analysis , Seawater/chemistry , Polychlorinated Biphenyls/analysis , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Coral Reefs , Oceans and Seas
2.
Acta Biomater ; 180: 394-406, 2024 05.
Article En | MEDLINE | ID: mdl-38615810

The construction and optimization of a single phototherapeutic agent with photoluminescence, type I photodynamic therapy (PDT), and photothermal therapy (PTT) functions remain challenging. In this study, we aimed to design and synthesize four donor-acceptor (D-A) type aggregation-induced emission molecules: PSI, TPSI, PSSI, and TPSSI. We employed phenothiazine as an electron donor and 1,3-bis(dicyanomethylidene)indan as a strong electron acceptor in the synthesis process. Among them, TPSSI exhibited efficient type I reactive oxygen species generation, high photothermal conversion efficiency (45.44 %), and near-infrared emission. These observations can be attributed to the introduction of a triphenylamine electron donor group and a thiophene unit, which resulted in increased D-A strengths, a reduced singlet-triplet energy gap, and increased free intramolecular motion. TPSSI was loaded into bovine serum albumin to prepare biocompatible TPSSI nanoparticles (NPs). Our results have indicated that TPSSI NPs can target lipid droplets with negligible dark toxicity and can efficiently generate O2•- in hypoxic tumor environments. Moreover, TPSSI NPs selectively targeted 4T1 tumor tissues and exhibited a good PDT-PTT synergistic effect in vitro and in vivo. We believe that the successful preparation of multifunctional phototherapeutic agents will promote the development of efficient tumor diagnosis and treatment technologies. STATEMENT OF SIGNIFICANCE: The construction of a single phototherapeutic agent with photoluminescence, type I photodynamic therapy, and photothermal therapy functions, and its optimization remain challenging. In this study, we construct four donor-acceptor aggregation-induced emission molecules using phenothiazine as an electron donor and 1,3-Bis(dicyanomethylidene)indan as a strong electron acceptor. By optimizing the molecular structure, an integrated phototherapy agent with fluorescence imaging ability and high photodynamic / photothermal therapy performance was prepared. We believe that the successful preparation of multifunctional phototherapeutic agents will promote the development of efficient tumor diagnosis and treatment technology.


Photochemotherapy , Photothermal Therapy , Animals , Photochemotherapy/methods , Mice , Female , Mice, Inbred BALB C , Cell Line, Tumor , Infrared Rays , Nanoparticles/chemistry , Nanoparticles/therapeutic use
3.
Mar Environ Res ; 190: 106110, 2023 Sep.
Article En | MEDLINE | ID: mdl-37537017

Scleractinian cold-water corals (CWCs) are one of the most important habitat engineers of the deep sea. Although the South China Sea (SCS) abuts the biodiversity center of scleractinian CWCs in the western Pacific, only a few sporadic records are available. We discovered new CWC sites by means of trawl sampling and video observation along the continental shelf of the northwestern SCS. All trawled scleractinian CWC specimens were identified to species level according to skeleton morphology and structure. The living CWCs and associated fauna recorded in the video were -identified to a higher level of classification. Scleractinian corals were identified to genus level, while non-scleractinian CWCs were identified to family level and given general names such as gorgonian corals, bamboo corals and black corals. Associated benthic dwellers were divided into major categories. A total of 28 scleractinian CWC species were identified to 7 families, 15 genera, and 1 additional subgenus. Among them, 13 species were colonial, including important habitat-forming species in the genera Eguchipsammia, Dendrophyllia and Cladopsammia. Non-scleractinian CWCs were identified to 7 families, including 4 families gorgonian corals, 1 family bamboo corals, and 2 families black corals. Gorgonian corals were the most abundant non-scleractinian CWCs in this region. Meanwhile, starfish, sea anemones, fish, gastropods, echinoderms, and other associated benthic fauna were recorded in the CWC habitats, with starfish belonging to the order Brisingida being most common. New scleractinian CWC assemblages were discovered along the continental seabed mounds in the northwestern SCS. This study highlights the remarkable diversity of cold-water scleractinian corals in the whole SCS, and shows the potential widespread distribution and conservation prospect of CWC habitats in this region.


Anthozoa , Animals , Ecosystem , Water , Biodiversity , China
4.
Biomed Mater ; 18(2)2023 02 22.
Article En | MEDLINE | ID: mdl-36720160

We developed a pH/glutathione (GSH) dual-responsive smart nano-drug delivery system to achieve targeted release of a chemotherapeutic drug at breast tumor site. Doxorubicin (DOX) was linked to polyethylene glycol (PEG) through cis-aconitic anhydride (CA) and disulfide bonds (SS) to obtain the PEG-SS-CA-DOX prodrug, which spontaneously assembled into nanomicelles with a particle size of 48 ± 0.45 nm. PEG-SS-CA-DOX micelles achieved an efficient and rapid release of DOX under dual stimulation by weak acidic pH and high GSH content of tumors, with the release amount reaching 88.0% within 48 h. Cellular uptake experiments demonstrated that PEG-SS-CA-DOX micelles could efficiently transport DOX into cells and rapidly release it in the tumor microenvironment. In addition,in vivoantitumor experiments showed that PEG-SS-CA-DOX had a high inhibition rate of 70% against 4T1 breast cancer cells along with good biosafety. In conclusion, dual-responsive smart nanomicelles can achieve tumor-targeted drug delivery and specific drug release, thus improving therapeutic efficacy of drugs.


Breast Neoplasms , Micelles , Humans , Female , Doxorubicin/chemistry , Polyethylene Glycols/chemistry , Glutathione , Hydrogen-Ion Concentration , Drug Carriers/chemistry , Tumor Microenvironment
5.
ACS Nano ; 16(1): 1421-1435, 2022 Jan 25.
Article En | MEDLINE | ID: mdl-34962119

Combinatorial cancer therapies based on nanomedicine have emerged as a promising strategy to achieve potentiated treatment efficiency. Herein, cisplatin (CDDP) prodrug (Pt-CD) and a mitochondria-targeted near-infrared (NIR) photosensitizer IR780 were combined to construct a multifunctional nanomedicine IR780@Pt NPs through a supramolecular self-assembly strategy. Targeted mitochondrial dysfunction of cancer cells was sufficiently induced under NIR laser irradiation through both photothermal and photodynamic effects, inhibiting the overactive mitochondrial energy pathways of cancer cells. The mitochondrial dysfunction significantly attenuated the crosstalk between mitochondria and nucleus via the cellular ATP energy chain, leading to obvious down-regulation of the key proteins of the nucleotide excision repair (NER) pathway. Thereby, the chemotherapeutic effect of CDDP could be significantly potentiated because of reduced DNA lesion repair capacity by ERCC1-XPF nuclease system. Moreover, IR780@Pt NPs exhibited excellent NIR fluorescence and photoacoustic (PA) imaging capacity for in vivo imaging-guided NIR laser treatment. Ultimately, the IR780@Pt NPs mediated combinatorial chemophototherapy achieved potentiated anticancer efficacy against cancer cells in vitro and tumor inhibition performance in vivo. Overall, this study highlighted the significance of nanomedicine mediated targeted induction of mitochondrial dysfunction to potentiate chemotherapy for efficient combinatorial cancer therapy.


Nanoparticles , Photochemotherapy , Cisplatin/pharmacology , Photochemotherapy/methods , Nanomedicine , Infrared Rays , Nanoparticles/therapeutic use , Theranostic Nanomedicine/methods , Mitochondria , Phototherapy/methods , Cell Line, Tumor
6.
Exploration (Beijing) ; 2(4): 20220082, 2022 Aug.
Article En | MEDLINE | ID: mdl-37325608

InP quantum dots (QDs) are a promising and environment-friendly alternative to Cd-based QDs for in vitro diagnostics and bioimaging applications. However, their poor fluorescence and stability severely limit their biological applications. Herein, we synthesize bright (∼100%) and stable InP-based core/shell QDs by using cost-effective and low-toxic phosphorus source, and then aqueous InP QDs are prepared with quantum yield over 80% by shell engineering. The immunoassay of alpha-fetoprotein can be detected in the widest analytical range of 1-1000 ng ml-1 and the limit of detection of 0.58 ng ml-1 by using those InP QDs-based fluorescent probes, making it the best-performing heavy metal-free detection reported so far, comparable to state-of-the-art Cd-QDs-based probes. Furthermore, the high-quality aqueous InP QDs exhibit excellent performance in specific labeling of liver cancer cells and in vivo tumor-targeted imaging of live mice. Overall, the present work demonstrates the great potential of novel high-quality Cd-free InP QDs in cancer diagnosis and image-guided surgery.

7.
Int J Nanomedicine ; 16: 7023-7033, 2021.
Article En | MEDLINE | ID: mdl-34703225

PURPOSE: Gold nanoparticles (AuNPs) with good physical and biological properties are often used in medicine, diagnostics, food, and similar industries. This paper explored an AuNPs drug delivery system that had good target selectivity for folate-receptor overexpressing cells to induce apoptosis. METHODS: A novel drug delivery system, Au@MPA-PEG-FA-PTX, was developed carrying paclitaxel (PTX) on folic acid (FA) and polyethylene glycol (PEG)-modified AuNPs. The nanomaterial was characterized by transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and ultraviolet-visible spectroscopy (UV-Vis). Also, the biological activity of the AuNPs drug delivery system was examined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in HL-7702, Hela, SMMC-7721, and HCT-116 cells. Furthermore, apoptotic activity using annexin V-FITC, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) levels was estimated by flow cytometry and fluorescence microscopy. RESULTS: Au@MPA-PEG-FA-PTX exhibited a distinct core-shell structure with a controllable size of 28±1 nm. Also, the AuNPs maintained good dispersion and spherical shape uniformity before and after modification. The MTT assay revealed good antitumor activity of the Au@MPA-PEG-FA-PTX against the Hela, SMMC-7721, and HCT-116 cells, while Au@MPA-PEG-FA-PTX produced better pharmacological effects than PTX in isolation. Further mechanistic investigation revealed that effective internalization of AuNPs by folate-receptor overexpressing cancer cells induced cell apoptosis through excessive production of intracellular ROS. CONCLUSION: The AuNPs drug delivery system showed good target selectivity for folate-receptor overexpressing cancer cells to induce target cell-specific apoptosis. These AuNPs may have great potential as theranostic agents such as in cancer.


Metal Nanoparticles , Nanoparticles , Cell Line, Tumor , Drug Carriers , Folic Acid , Gold , Paclitaxel/pharmacology , Polyethylene Glycols
8.
Nanotechnology ; 32(45)2021 Aug 19.
Article En | MEDLINE | ID: mdl-34340227

In this study, a nanodrug carrier (mesoporous silica nanoparticle (MSN)-SS-cysteamine hydrochloride (CS)-hyaluronic acid (HA)) for targeted drug delivery was prepared using MSNs, in which HA was used as a targeting ligand and blocking agent to control drug release. Coumarin is a fluorescent molecule that targets mitochondria. Two conjugates (XDS-DJ and 5-FUA-4C-XDS) were synthesized by chemically coupling nitrogen mustard and 5-fluorouracil with coumarin, which was further loaded into MSN-SS-CS-HA nanocarriers. MTT analysis demonstrated that the nanocomposite MSN-SS-CS@5-FUA-4C-XDS/HA displayed stronger cytotoxicity toward HCT-116 cells than HeLa or QSG-7701 cells. Furthermore, MSN-SS-CS@5-FUA-4C-XDS/HA was able to target the mitochondria of HCT-116 cells, causing decreased mitochondrial membrane potential and excessive production of reactive oxygen species. These results indicate that MSN-SS-CS@5-FUA-4C-XDS/HA has the potential to be a nanodrug delivery system for the treatment of colon cancer.


Coumarins/chemical synthesis , Cysteamine/chemistry , Fluorouracil/chemistry , Hyaluronic Acid/chemistry , Mitochondria/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Coumarins/chemistry , Coumarins/pharmacology , Drug Compounding , HCT116 Cells , HeLa Cells , Humans , Mechlorethamine/chemistry , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Nanoparticles , Particle Size , Porosity , Reactive Oxygen Species/metabolism , Silicon Dioxide , Theranostic Nanomedicine
9.
Pharmaceuticals (Basel) ; 14(2)2021 Jan 28.
Article En | MEDLINE | ID: mdl-33525717

Functionalized gold nanoparticles (AuNPs) have been successfully used in many fields as a result of having low cytotoxicity, good biocompatibility, excellent optical properties, and their ability to target cancer cells. Here, we synthesized AuNP carriers that were modified by hyaluronic acid (HA), polyethylene glycol (PEG), and adipic dihydrazide (ADH). The antitumor drug doxorubicin (Dox) was loaded into AuNP carriers and attached chemically. The Au nanocomposite AuNPs@MPA-PEG-HA-ADH-Dox was able to disperse uniformly in aqueous solution, with a diameter of 15 nm. The results of a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay indicated that AuNP carriers displayed very little toxicity toward cells in high doses, although the antitumor properties of Au nanocomposites were significantly enhanced. Cellular uptake experiments demonstrated that AuNPs modified with hyaluronic acid were more readily ingested by HepG2 and HCT-116 cells, as they have a large number of CD44 receptors. A series of experiments measuring apoptosis such as Rh123 and annexin V-FITC staining, and analysis of mitochondrial membrane potential (MMP) analysis, indicated that apoptosis played a role in the inhibition of cell proliferation by AuNPs@MPA-PEG-HA-ADH-Dox. Excessive production of reactive oxygen species (ROS) was the principal mechanism by which the Au nanocomposites inhibited cell proliferation, leading to apoptosis. Thus, the Au nanocomposites, which allowed cell imaging in real-time and induced apoptosis in specific cell types, represent theragnostic agents with potential for future clinical applications in bowel cancer.

10.
Int J Nanomedicine ; 15: 2765-2776, 2020.
Article En | MEDLINE | ID: mdl-32425520

PURPOSE: Over the past decades, quantum dots (QDs) have shown the broad application in diverse fields, especially in intracellular probing and drug delivery, due to their high fluorescence intensity, long fluorescence lifetime, strong light-resistant bleaching ability, and strong light stability. Therefore, we explore a kind of therapeutic potential against cancer with fluorescent imaging. METHODS: In the current study, a new type of QDs (QDs@L-Cys-TAEA-5-FUA) capped with L-cysteine (L-Cys) and tris(2-aminoethyl)amine (TAEA) ligands, and conjugated with 5-fluorouracil-1-acetic acid (5-FUA) has been synthesized. Ligands were characterized by electrospray ionization mass spectrometry and H-nuclear magnetic resonance (1H NMR) spectroscopy. The modified QDs were characterized by transmission electron microscopy, ultraviolet and visible spectrophotometry (UV-Vis), and fluorescence microscopy. And the biological activity of modified QDs was explored by using MTT assay with HeLa, SMMC-7721 HepG2, and QSG-7701 cells. The fluorescence imaging of modified QDs was obtained by fluorescence microscope. RESULTS: The modified QDs are of controllable sizes in the range of 4-5 nm and they possess strong optical emission properties. UV-Vis and fluorescence spectra demonstrated that the L-Cys-TAEA-5-FUA was successfully incorporated into QD nanoparticles. The MTT results demonstrated that L-Cys-TAEA-5-FUA modified QDs could efficiently inhibit the proliferation of cancer cells as compared to the normal cells, illustrating their antitumor efficacy. The mechanistic studies revealed that the effective internalization of modified QDs inside cancer cells could inhibit their proliferation, through excessive production of intracellular reactive oxygen species, leading to apoptosis process. CONCLUSION: The present study suggests that modified QDs can enter cells efficiently and could be employed as therapeutic agents for the treatment of various types of cancers with fluorescent imaging.


Antimetabolites, Antineoplastic/pharmacology , Fluorouracil/pharmacology , Quantum Dots/chemistry , Antimetabolites, Antineoplastic/administration & dosage , Antimetabolites, Antineoplastic/chemistry , Cell Proliferation/drug effects , Cysteine/chemistry , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Ethylenediamines/chemistry , Fluorouracil/administration & dosage , Fluorouracil/chemistry , HeLa Cells , Hep G2 Cells , Humans , Membrane Potential, Mitochondrial/drug effects , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Quantum Dots/therapeutic use , Reactive Oxygen Species/metabolism , Spectrophotometry, Ultraviolet
11.
Int J Nanomedicine ; 15: 1611-1622, 2020.
Article En | MEDLINE | ID: mdl-32210555

PURPOSE: Quantum dots (QDs) are used as fluorescent probes due to their high fluorescence intensity, longevity of fluorescence, strong light-resistant bleaching ability and high light stability. Therefore, we explore a more precise probe that can target an organelle. METHODS: In the current study, a new class of fluorescence probes were developed using QDs capped with 4 different L-cysteine-polyamine-morpholine linked by mercapto groups. Ligands were characterised by Electrospray ionization mass spectrometry (ESI-MS), H-Nuclear Magnetic Resonance (1H NMR) spectroscopy, and 13C NMR spectroscopy. Modified QDs were characterized by Transmission Electron Microscope (TEM), Ultraviolet and visible spectrophotometry (UV-Vis), and fluorescence microscopy. And the biological activity of modified QDs was explored by using MTT assay with HeLa, SMMC-7721 and HepG2 cells. The fluorescence imaging of modified QDs was obtained by confocal laser scanning fluorescence microscopy (CLSM). RESULTS: Synthesized QDs ranged between 4 to 5 nm and had strong optical emission properties. UV-Vis and fluorescence spectra demonstrated that the cysteine-polyamine-morpholine were successfully incorporated into QD nanoparticles. The MTT results demonstrated that modified QDs had lesser cytotoxicity when compared to unmodified QDs. In addition, modified QDs had strong fluorescence intensity in HeLa cells and targeted lysosomes of HeLa cells. CONCLUSION: This study demonstrates the modified QDs efficiently entered cells and could be used as a potential lysosome-targeting fluorescent probe.


Fluorescent Dyes/chemistry , Lysosomes/drug effects , Microscopy, Confocal/methods , Quantum Dots/chemistry , Cysteine/chemistry , Fluorescent Dyes/analysis , HeLa Cells , Hep G2 Cells , Humans , Microscopy, Fluorescence , Morpholines/chemistry , Nanoparticles/chemistry , Polyamines/chemistry , Quantum Dots/analysis , Solubility , Spectrophotometry, Ultraviolet
12.
ACS Omega ; 4(18): 17850-17856, 2019 Oct 29.
Article En | MEDLINE | ID: mdl-31681893

The surface modification of nanoparticles (NPs) can enhance cellular and intracellular targeting. A new type of polyamine-modified gold NPs (AuNPs) are designed and synthesized, which can be selectively absorbed onto the cell membrane. AuNPs with an average diameter of 4.0 nm were prepared and modified with polyamine (R-4C) through amidation. In order to detect the distribution of NPs within cells by fluorescence imaging, AuNP@MPA-R-4C was functionalized with fluorescein isothiocyanate (FITC). The fluorescence-labled NPs AuNP@MPA-R-4C-FITC demonstrated minimal cytotoxicity in several cell lines. Both confocal laser scanning microscopy and transmission electron microscopy demonstrated that AuNP@MPA-R-4C-FITC was distributed on the cell membrane. Compared with the free organic dye, the modified AuNPs showed significantly increased accumulation on the cell membrane after treatment for only 10 min. These results suggested that AuNP@MPA-R-4C-FITC can be used as a bioprobe targeting the cell membrane for various biological applications.

13.
Article En | MEDLINE | ID: mdl-30593994

By introducing the S-aryl substituents at the central carbon on heptamethine cyanine, we have developed a near-infrared fluorescent probe Cy.7-PT. The probe had the high selectivity for the colorimetric detection of Cys/Hcy with the color changing from light green to blue. Cys could be quantitatively detected and the detection limit is 0.39 µM. Cell imaging and spiked samples experiments prove that the probe Cy.7-PT is suitable for monitoring and visualizing Cys in vitro and living cells.


Colorimetry/methods , Cysteine/analysis , Fluorescent Dyes/chemistry , Homocysteine/analysis , Spectroscopy, Near-Infrared/methods , HeLa Cells , Humans , Spectrometry, Fluorescence
14.
Nanoscale Res Lett ; 13(1): 304, 2018 Sep 29.
Article En | MEDLINE | ID: mdl-30269179

Functionalized gold nanoparticles (AuNPs) have widely applied in many fields, due to their good biocompatibility, a long drug half-life, and their bioactivity is related to their size and the modified ligands on their surface. Here, we synthesized the AuNPs capped with ligands that possess polyethylene glycol (PEG) and lithocholic acid (LCA) linked by carboxyl groups (AuNP@MPA-PEG-LCA). Our cytotoxicity results indicated that AuNP@MPA-PEG-LCA have better cell selectivity; in other words, it could inhibit the growth of multiple liver cancer cells more effectively than other cancer cells and normal cells. Apoptosis plays a role in AuNP@MPA-PEG-LCA inhibition cell proliferation, which was convincingly proved by some apoptotic index experiments, such as nuclear staining, annexin V-FITC, mitochondrial membrane potential (MMP) analysis, and AO/EB staining experiments. The most potent AuNP@MPA-PEG-LCA were confirmed to efficiently induce apoptosis through a reactive oxygen species (ROS) mediating mitochondrial dysfunction. And AuNP@MPA-PEG-LCA could be more effective in promoting programmed cell death of liver cancer cells.

15.
Chem Biol Drug Des ; 91(1): 285-293, 2018 01.
Article En | MEDLINE | ID: mdl-28791767

The modified quantum dots (QDs) have been used in intracellular probing and drug delivery because of their special chemical and physical properties. In this paper, two ß-cyclodextrin (ß-CD)-modified CdSe/ZnS QDs with strong optical emission properties were synthesized as drug carriers to induce apoptosis. The positively charged l-Arginine (l-Arg) and neutral l-Tryptophan (l-Trp) were selected as ligands to compare the effect of charge on bioactivity of QDs nanoparticles. The in vitro assays revealed that these modified QDs showed good Dox carrier ability and significantly high inhibition rate to cancer cells. Especially, the more positively charged ß-CD-l-Arg-polyamine-coated CdSe/ZnS QDs could effectively deliver the doxorubicin (Dox) into cells and exhibit excellent cell selectivity in cancer versus normal cells. The Dox-loaded QDs could enter intracellular, which showed that the Dox can efficiently go through the membranes at the existence of ß-CD. Several lines of evidence suggest that the Dox-loaded QDs can efficiently induce apoptosis likely related to the production of ROS. We expect that the modified QDs can enhance the amount of hydrophobic antitumor drugs in cells and can also be used as fluorescent imaging agents.


Doxorubicin/chemistry , Drug Carriers/chemistry , Quantum Dots/chemistry , beta-Cyclodextrins/chemistry , Apoptosis/drug effects , Cadmium Compounds/chemistry , Cell Line, Tumor , Doxorubicin/metabolism , Doxorubicin/pharmacology , Humans , Microscopy, Confocal , Polyamines/chemistry , Reactive Oxygen Species/metabolism , Selenium Compounds/chemistry , Sulfides/chemistry , Zinc Compounds/chemistry
16.
Langmuir ; 33(27): 6727-6731, 2017 07 11.
Article En | MEDLINE | ID: mdl-28657319

Surfaces with gradient properties are of central importance for a number of chemical and biological processes. Here, we report rapid generation of a polydopamine (PDA) gradient on hydrophobic surfaces by a simple, low cost, and general technology, cyclic draining-replenishing (CDR). Due to the unique surface chemistry of PDA, it enables continuous and precise control of surface wettability and subsequent deposition of organic and inorganic compounds. Using kanamycin as a model compound, we show that the gradient PDA membrane potentially can be used to prepare minimum inhibitory concentration (MIC) test strips for quantifying resistance of antimicrobial agents from microorganisms. Because CDR is experimentally simple, scalable, fast, and does not require specialized reagents or instruments, we envision this platform can be easily adopted to create a variety of functional surfaces.


Indoles/chemistry , Polymers/chemistry , Anti-Infective Agents , Wettability
17.
ACS Biomater Sci Eng ; 3(5): 782-786, 2017 May 08.
Article En | MEDLINE | ID: mdl-33440493

Polydopamine (PDA), a bioinspired polymer, has found diverse applications including biotechnology and energy research due to its unique properties for surface modification. In recent years, the reaction conditions for dopamine polymerization and thin film growth have been thoroughly examined and optimized. The fundamental problem of diffusion limitation at the solid-liquid interface that slows down PDA deposition, however, remains to be addressed. Here, we present a physical methodology that can be added onto virtually all the current chemical conditions for rapid deposition of polymers on surface. The concept of this general technology can potentially impact other research areas dealing with solid-liquid interfaces, such as biosensing and catalysis.

18.
Nanoscale Res Lett ; 11(1): 207, 2016 Dec.
Article En | MEDLINE | ID: mdl-27090658

Quantum dots (QDs), nano-carriers for drugs, can help realize the targeting of drugs, and improve the bioavailability of drugs in biological fields. And, a QD nano-carrier system for drugs has the potential to realize early detection, monitoring, and localized treatments of specific disease sites. In addition, QD nano-carrier systems for drugs can improve stability of drugs, lengthen circulation time in vivo, enhance targeted absorption, and improve the distribution and metabolism process of drugs in organization. So, the development of QD nano-carriers for drugs has become a hotspot in the fields of nano-drug research in recent years. In this paper, we review the advantages and applications of the QD nano-carriers for drugs in biological fields.

19.
Nanoscale Res Lett ; 10: 171, 2015.
Article En | MEDLINE | ID: mdl-25897311

Quantum dots (QDs) are a class of nanomaterials with good optical properties. Compared with organic dyes, QDs have unique photophysical properties: size-tunable light emission, improved signal brightness, resistance against photobleaching, and simultaneous excitation of multiple fluorescence colors. Possessing versatile surface chemistry and superior optical features, QDs are useful in a variety of in vitro and in vivo applications. When linked with targeting biomolecules, QDs can be used to target cell biomarkers because of high luminescence and stability. So QDs have the potential to become a novel class of fluorescent probes. This review outlines the basic properties of QDs, cell fluorescence labeling, and tumor diagnosis imaging and discusses the future directions of QD-focused bionanotechnology research in the life sciences.

20.
J Inorg Biochem ; 137: 31-9, 2014 Aug.
Article En | MEDLINE | ID: mdl-24803024

The effective targeted delivery of insoluble anticancer drugs to increase the intracellular drug concentration has become a focus in cancer therapy. In this system, two water-soluble amino acid-modified ß-cyclodextrin (ß-CD) platinum complexes were reported. They showed preferable binding ability to DNA and effective inhibition to cancer cells, and they could bind and unwind pBR322 DNA in a manner which was similar to cisplatin. Besides, our platinum complexes could effectively deliver the anticancer drug doxorubicin (Dox) into cells and had higher cell inhibition ratio, but less toxicity on the normal cells, compared with cancer cells. In this combination system, Dox was encapsulated into the hydrophobic cavities of ß-CD at the optimum molar ratio of 1:1, which were validated by UV-visible (UV-vis) absorption spectroscopy, fluorescence spectroscopy and MTT experiments. Moreover, the combination system had higher cell inhibition ratio than free Dox and amino acid-modified ß-CD platinum complexes, and the results of high content screening (HCS) showed that Dox-loaded amino acid-modified ß-CD platinum complexes could permeate the cell membrane and enter cells, suggesting the efficient transport of Dox across the membranes with the aid of the ß-CD. We expect that the amino acid-modified ß-CD platinum complexes will deliver the antitumor drug Dox to enhance intracellular drug accumulation and such combination system showed great potential as an antitumor drug.


Doxorubicin/chemistry , Drug Carriers/chemistry , Platinum Compounds/chemistry , beta-Cyclodextrins/chemistry , Amino Acids/administration & dosage , Amino Acids/chemistry , Cell Line, Tumor , Doxorubicin/administration & dosage , Drug Carriers/administration & dosage , Humans , Hydrophobic and Hydrophilic Interactions , Neoplasms/drug therapy , Neoplasms/pathology , Platinum Compounds/administration & dosage , Water/chemistry , beta-Cyclodextrins/administration & dosage
...