Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 47
1.
Sci Total Environ ; : 173349, 2024 May 19.
Article En | MEDLINE | ID: mdl-38772487

The high toxicity and persistence of polychlorinated biphenyls (PCBs) in the environment require effective remediation of PCBs-contaminated soil. This study used polylactic acid (PLA) and polyethylene glycol 4000 (PEG-4000) to modify zero-valent iron nanoparticles (nZVI) and conducted characterization analysis. It was found that when the addition amount of PLA was 2 %, the dispersion of modified nZVI was better. The initial pH and water to soil ratio were subjected to single factor experiments and fitted using RSM response surface methodology. The optimal reaction conditions were obtained as follows: the addition amount was 84 g·kg-1, the initial pH was 5.41, and the optimal removal rate was 74 % when the ratio of water to soil was 1.8:1. PLA and PEG-4000 were biodegradable substances that played crucial roles in enhancing the effectiveness of nZVI for PCBs-contaminated soil. By encapsulating nZVI with PLA, we significantly reduced its oxidation when exposed to air. Additionally, the inclusion of PEG-4000 helped prevent the particles from clumping together. The synergistic effect of them increased the effective reaction of nZVI and PCBs and ultimately leading to more efficient remediation. This study offered a new pathway for the efficient green remediation of PCBs-contaminated soil.

2.
Environ Sci Pollut Res Int ; 31(19): 27689-27698, 2024 Apr.
Article En | MEDLINE | ID: mdl-38519614

Cruciferae brassica oilseed rape is the third largest oilseed crop in the world and the first in China, as well as a fertilizer-dependent crop. With the increased application of organic fertilizers from livestock manure in agricultural production in recent years, the resulting antibiotic pollution and its ecological health effects have attracted widespread attention. In this study, typical tetracycline and sulfonamide antibiotics tetracycline (TC) and sulfamethoxazole (SMZ) were used to investigate the effects of antibiotics on rapeseed quality and oxidative stress at the level of secondary metabolism on the basis of examining the effects of the two drugs on the growth of soil-cultivated rapeseed seedlings. The results showed that both plant height and biomass of rapeseed seedlings were significantly suppressed and ROS were significantly induced in rapeseed by exposure to high concentrations (2.5 mg/kg) of TC and SMZ. Carotenoids, tocopherols, and SOD enzymes were involved in the oxidative stress response to scavenge free radicals in rapeseed, but phenolic acids and flavonoids contents were decreased, which reduced the quality of the seeds to some extent.


Anti-Bacterial Agents , Oxidative Stress , Seeds , Oxidative Stress/drug effects , Seeds/drug effects , Brassica rapa/drug effects , Secondary Metabolism/drug effects , Brassica napus/drug effects , Seedlings/drug effects , China
3.
Adv Sci (Weinh) ; : e2310115, 2024 Mar 16.
Article En | MEDLINE | ID: mdl-38491872

In this work, 2D ferromagnetic M3 GeTe2 (MGT, M = Ni/Fe) nanosheets with rich atomic Te vacancies (2D-MGTv ) are demonstrated as efficient OER electrocatalyst via a general mechanical exfoliation strategy. X-ray absorption spectra (XAS) and scanning transmission electron microscope (STEM) results validate the dominant presence of metal-O moieties and rich Te vacancies, respectively. The formed Te vacancies are active for the adsorption of OH* and O* species while the metal-O moieties promote the O* and OOH* adsorption, contributing synergistically to the faster oxygen evolution kinetics. Consequently, 2D-Ni3 GeTe2v exhibits superior OER activity with only 370 mV overpotential to reach the current density of 100 mA cm-2 and turnover frequency (TOF) value of 101.6 s-1 at the overpotential of 200 mV in alkaline media. Furthermore, a 2D-Ni3 GeTe2v -based anion-exchange membrane (AEM) water electrolysis cell (1 cm2 ) delivers a current density of 1.02 and 1.32 A cm-2 at the voltage of 3 V feeding with 0.1 and 1 m KOH solution, respectively. The demonstrated metal-O coordination with abundant atomic vacancies for ferromagnetic M3 GeTe2 and the easily extended preparation strategy would enlighten the rational design and fabrication of other ferromagnetic materials for wider electrocatalytic applications.

4.
Chemphyschem ; 25(8): e202300897, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38323673

As a photocathode with a band gap of about 1.8 eV, copper bismuthate (CuBi2O4) is a promising material for photoelectrochemical (PEC) water splitting. However, weak charge transfer capability and severe carrier recombination suppress the PEC performance of CuBi2O4. In this paper, the conductivity and carriers transport of CuBi2O4 are improved via introducing Zn2+ into the synthesis precursor of CuBi2O4, driving a beneficial 110 mV positive shift of onset potential in photocurrent. Detailed investigations demonstrate that the introduction of an appropriate amount of zinc leads to in situ segregation of ZnO which serves as an electron transport channel on the surface of CuBi2O4, forming heterojunctions. The synergistic effect of heterojunctions and doping simultaneously promotes the charge transfer and the carrier concentration. OCP experiment proves that ZnO/Zn-CuBi2O4 possesses better charge separation; the Mott-Schottky curve shows that the doping of Zn significantly enhances the carrier concentration; carrier lifetime calculated from time-resolved photoluminescence confirms faster extraction of carriers.

5.
Adv Mater ; : e2312004, 2024 Feb 24.
Article En | MEDLINE | ID: mdl-38402422

Quantum anomalous Hall (QAH) insulators transport charge without resistance along topologically protected chiral 1D edge states. Yet, in magnetic topological insulators to date, topological protection is far from robust, with zero-magnetic field QAH effect only realized at temperatures an order of magnitude below the Néel temperature TN , though small magnetic fields can stabilize QAH effect. Understanding why topological protection breaks down is therefore essential to realizing QAH effect at higher temperatures. Here a scanning tunneling microscope is used to directly map the size of exchange gap (Eg,ex ) and its spatial fluctuation in the QAH insulator 5-layer MnBi2 Te4 . Long-range fluctuations of Eg,ex are observed, with values ranging between 0 (gapless) and 70 meV, appearing to be uncorrelated to individual surface point defects. The breakdown of topological protection is directly imaged, showing that the gapless edge state, the hallmark signature of a QAH insulator, hybridizes with extended gapless regions in the bulk. Finally, it is unambiguously demonstrated that the gapless regions originate from magnetic disorder, by demonstrating that a small magnetic field restores Eg,ex in these regions, explaining the recovery of topological protection in magnetic fields. The results indicate that overcoming magnetic disorder is the key to exploiting the unique properties of QAH insulators.

6.
Eur J Pharmacol ; 968: 176418, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38350590

The management of patients with acute myeloid leukemia (AML) remains a challenge because of the complexity and heterogeneity of this malignancy. Despite the recent approval of several novel targeted drugs, resistance seems inevitable, and clinical outcomes are still suboptimal. Increasing evidence supports the use of natural plants as an important source of anti-leukemic therapeutics. Licochalcone A (LCA) is an active flavonoid isolated from the roots of licorice, Glycyrrhiza uralensis Fisch., possessing extensive anti-tumor activities. However, its effects on AML and the underlying mechanisms remain unknown. Here, we showed that LCA decreased the viability of established human AML cell lines in a dose- and time-dependent manner. LCA significantly induced mitochondrial apoptotic cell death, accompanied by the downregulation of MCL-1, upregulation of BIM, truncation of BID, and cleavage of PARP. A prominent decline in the phosphorylation of multiple critical molecules, including AKT, glycogen synthase kinase-3ß (GSK3ß), ERK, and P38 was observed upon LCA treatment, indicating PI3K and MAPK signals were suppressed. Both transcription and translation of c-Myc were also inhibited by LCA. In addition, LCA enhanced the cytotoxicity of the BCL-2 inhibitor venetoclax. Furthermore, the anti-survival and pro-apoptotic effects were confirmed in primary blasts from 10 patients with de novo AML. Thus, our results expand the applications of LCA, which can be regarded as a valuable agent in treating AML.


Chalcones , Leukemia, Myeloid, Acute , Proto-Oncogene Proteins c-bcl-2 , Sulfonamides , Humans , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Line, Tumor , Leukemia, Myeloid, Acute/pathology , Apoptosis , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Mitochondria
7.
J Org Chem ; 89(3): 1633-1647, 2024 Feb 02.
Article En | MEDLINE | ID: mdl-38235569

A metal-free and atom-economic route for the synthesis of naphtho[1,2-b]furan-3-ones has been realized via p-TsOH·H2O-catalyzed intramolecular tandem double cyclization of γ-hydroxy acetylenic ketones with alkynes in formic acid. The benzene-linked furanonyl-ynes are the key intermediates obtained by the scission/recombination of C-O double bonds. Further, the structural modifications of the representative product were implemented by reduction, demethylation, substitution, and [5 + 2]-cycloaddition.

8.
Data Brief ; 52: 109981, 2024 Feb.
Article En | MEDLINE | ID: mdl-38152489

Understanding neural mechanisms in design and creativity processes remains a challenging endeavor. To address this gap, we present two electroencephalography (EEG) datasets recorded in design and creativity experiments. We have discussed the details, similarities, differences, and corresponding cognitive tasks of the two datasets in the following sections. The design dataset (Dataset A) comprises EEG recordings of 27 participants during loosely controlled design creation experiments. Each experiment included six design problems. In each design problem, participants performed five cognitive tasks, including problem understanding, idea generation, rating idea generation, idea evaluation, and rating idea evaluation. The NASA Task Load Index was used in rating tasks. The creativity dataset (Dataset B) includes EEG signals recorded from 28 participants in creativity experiments which were based on a modified variant of the Torrance Test of Creative Thinking (TTCT-F). Participants were presented with three incomplete sketches and were asked to perform three creativity tasks for each sketch: idea generation, idea evolution, and idea evaluation. In both datasets, we structured the experiments into predefined steps, primarily to ensure participants' comfort and task clarity. This was the only control applied to the experiments. All the tasks were loosely controlled: open-ended (up to 3 min) and self-paced. 64-channel EEG signals were recorded at 500 Hz based on the international 10-10 system by the Brain Vision EEG recording system while the participants were performing their assigned tasks. EEG channels were pre-processed and finally referenced to the Cz channel to remove artifacts. EEGs were pre-processed using popular pipelines widely used in previous studies. Preprocessed EEG signals were finally segmented according to the tasks to facilitate future analyses. The EEG signals are stored in the .mat format. While the present paper mainly addresses pre-processed datasets, it also cites raw EEG recordings in the following sections. We aim to promote research and facilitate the development of experimental protocols and methodologies in design and creativity cognition by sharing these resources. There exist important points regarding the datasets which are worth mentioning. These datasets represent a novel contribution to the field, offering insights into design and creativity neurocognition. To our knowledge, publicly accessible datasets of this nature are scarce, and, to the best of our knowledge, our datasets are the first publicly available ones in design and creativity. Researchers can utilize these datasets directly or draw upon the considerations and technical insights provided to inform their studies. Furthermore, we introduce the concept of loosely controlled cognitive experiments in design and creativity cognition. These experiments strike a balance between flexibility and control, allowing participants to incubate creative ideas over extended response times while maintaining structured experimental sections. Such an approach fosters more natural data recording procedures and holds the potential to enhance the accuracy and reliability of future studies. The loosely controlled approach can be employed in future cognitive studies. This paper also conducts a comparative analysis of the two datasets, offering a holistic view of design and creativity tasks. By exploring various aspects of these cognitive processes, we provide an understanding for future researchers.

9.
Phytomedicine ; 120: 155074, 2023 Nov.
Article En | MEDLINE | ID: mdl-37716033

BACKGROUND: B-cell lymphoma, which originates from B cells at diverse differentiation stages, is the most common non-Hodgkin lymphoma with tremendous treatment challenges and unsatisfactory clinical outcomes. Flavokawain B (FKB), a naturally occurring chalcone extracted from kava, possesses promising anticancer properties. However, evidence on the effects of FKB on hematological malignancies, particularly lymphomas, remains scarce. PURPOSE: This study aimed to investigate the antilymphoma effect of FKB and its underlying mechanisms. STUDY DESIGN/METHODS: Proliferation assays, flow cytometry, and western blotting were employed to determine whether and how FKB affected B-cell lymphoma cell lines in vitro. Xenograft mouse models were established to evaluate the antilymphoma efficacy of FKB in vivo. RESULTS: FKB reduced the viability of a panel of B-cell lymphoma cell lines in a dose- and time-dependent manner. Mitochondrial apoptosis was markedly induced by FKB, as evidenced by an increased percentage of annexin V-positive cells, a loss of mitochondrial membrane potential, and cleavage of caspase-3 and PARP. Moreover, FKB inhibited BCL-XL expression and synergized with the BCL-2 inhibitor ABT-199. Mechanistically, FKB treatment decreased the phosphorylation of Akt, mammalian target of rapamycin (mTOR), glycogen synthase kinase-3ß (GSK3ß), and ribosomal protein S6 (RPS6). Pharmacological blockage of phosphoinositide 3-kinase (PI3K), Akt, or GSK3ß potentiated the activity of FKB, indicating the involvement of the PI3K/Akt cascade in FKB-mediated inhibitory effects. In mouse xenograft models, the intraperitoneal administration of FKB significantly decreased lymphoma growth, accompanied by diminished mitosis and Ki-67 staining of tumor tissues. CONCLUSION: Our data demonstrate the robust therapeutic potential of FKB in the treatment of B-cell lymphoma.


Chalcones , Kava , Lymphoma, B-Cell , Humans , Animals , Mice , Chalcones/pharmacology , Glycogen Synthase Kinase 3 beta , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Lymphoma, B-Cell/drug therapy , Mammals
10.
Eur J Pharmacol ; 956: 175957, 2023 Oct 05.
Article En | MEDLINE | ID: mdl-37541375

Acute myeloid leukemia (AML) is a highly heterogeneous and rapidly progressive hematopoietic neoplasm characterized by frequent relapses and variable prognoses. The development of new treatment options, therefore, is of crucial importance. Platycodin D (PD) is a triterpenoid saponin, extracted from the roots of the traditional Chinese herbal medicine Platycodon grandiflorum (Jacq.) A. DC., which has been reported to exhibit therapeutic potential against a broad range of cancers. Although the effects of PD on AML remain unclear, in the present study, we observed a concentration-dependent reduction in the viability of multiple human AML cell lines in response to treatment with PD. In addition to triggering mitochondria-dependent apoptosis via the upregulation of BAK and BIM, treatment with PD also induced cell cycle arrest at the G0/G1 phase. Western blot analyses revealed marked suppression of the phosphorylation of protein kinase B (AKT), glycogen synthase kinase-3ß, ribosomal protein S6, and extracellular signal-regulated kinase (ERK) by PD, in turn implying the participation of the phosphoinositide 3-kinase (PI3K)/AKT and mitogen-activated protein kinase (MAPK)/ERK pathways. Pre-incubation with LY294002, MK2206, AR-A014418, or U0126 was consistently found to significantly aggravate PD-induced inhibition of viability. Additionally, PD combined with the B-cell lymphoma 2 (BCL2) inhibitor venetoclax elicited synergistically enhanced cytotoxic effects. The anti-leukemic activity of PD was further validated using primary samples from de novo AML patients. Given the results of the present study, PD may be a potent therapeutic candidate for the treatment of AML.


Leukemia, Myeloid, Acute , Saponins , Triterpenes , Humans , Proto-Oncogene Proteins c-akt/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinase/metabolism , MAP Kinase Signaling System , Cell Line, Tumor , Leukemia, Myeloid, Acute/pathology , Saponins/pharmacology , Saponins/therapeutic use , Triterpenes/pharmacology , Apoptosis
11.
J Am Chem Soc ; 145(32): 17995-18006, 2023 Aug 16.
Article En | MEDLINE | ID: mdl-37550082

The acidic oxygen evolution reaction (OER) has long been the bottleneck of proton exchange membrane water electrolyzers given its harsh oxidative and corrosive environments. Herein, we suggest an effective strategy to greatly enhance both the acidic OER activity and stability of Co3O4 spinel by atomic Ru selective substitution on the octahedral Co sites. The resulting highly symmetrical octahedral Ru-O-Co collaborative coordination with strong electron coupling effect enables the direct dioxygen radical coupling OER pathway. Indeed, both experiments and theoretical calculations reveal a thermodynamically breakthrough heterogeneous diatomic oxygen mechanism. Additionally, the active Ru-O-Co units are well-maintained upon the acidic OER thanks to the electron transfer from surrounding electron-enriched tetrahedral Co atoms via bridging oxygen bonds that suppresses the overoxidation and thus dissolution of active Ru and Co species. Consequently, the prepared catalyst, even with a low Ru mass loading of ca. 42.8 µg cm-2, exhibits an attractive acidic OER performance with a low overpotential of 200 mV and a low potential decay rate of 0.45 mV h-1 at 10 mA cm-2. Our work suggests an effective strategy to significantly enhance both the acidic OER activity and stability of low-cost electrocatalysts.

12.
Sci Total Environ ; 902: 165768, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37516166

The secondary metabolism of plants is key for mediating responses to environmental stress, but few studies have examined how the relationship between secondary metabolism and the stress response of plants is affected by exposure to antibiotics. Here, we studied the effects of sulfamethoxazole (SMZ) on the secondary metabolism and antioxidant activity of oilseed rape (Brassica napus L.). SMZ significantly affected the growth of rape seedlings. Low and high concentrations of SMZ induced the production of a large number of reactive oxygen species (ROS) in rape seedlings, which damaged cells. SMZ stress altered the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as the content of malondialdehyde (MDA). SMZ promoted the activities of phenylalanine ammonia lyase (PAL), tyrosine ammonia lyase (TAL), cinnamic acid-4-hydroxylase (C4H), and 4-coumaric acid: coenzyme A ligase (4CL) by activating the phenylpropanoid pathway. The content of secondary metabolites changed. The content of phenolic acids and flavonoids increased, and the content of sinapine and anthocyanins was altered to cope with the oxidative damage induced by antibiotics. Transcriptomic and metabolomic analysis showed that differentially expressed genes and differentially expressed metabolites were mainly involved in Phenylpropanoid biosynthesis. SMZ alters the secondary metabolites of rapeseed, which mitigates the deleterious effects of stress, by modulating upstream secondary metabolism pathways and the production of plant hormones involved in signal transduction. In sum, these results provide a new perspective on the effects of SMZ on plants relative to secondary metabolites and improve our understanding of the toxicity of SMZ.


Brassica napus , Brassica rapa , Antioxidants/metabolism , Brassica napus/metabolism , Sulfamethoxazole/metabolism , Anthocyanins/metabolism , Brassica rapa/metabolism , Seedlings , Anti-Bacterial Agents/pharmacology
13.
Front Plant Sci ; 14: 1207518, 2023.
Article En | MEDLINE | ID: mdl-37389289

With the continuous change of global climate, the frequency of low-temperature stress (LTS) in spring increased greatly, which led to the increase of wheat yield decline. The effects of LTS at booting on grain starch synthesis and yield were examined in two wheat varieties with differing low-temperature sensitivities (insensitive variety Yannong 19 and sensitive variety Wanmai 52). A combination of potted and field planting was employed. For LTS treatment at booting, the wheat plants were placed in a climate chamber for 24 h at -2°C, 0°C or 2°C from 19:00 to 07:00 then 5°C from 07:00 to 19:00. They were then returned to the experimental field. The effects of flag leaf photosynthetic characteristics, the accumulation and distribution of photosynthetic products, enzyme activity related to starch synthesis and relative expression, the starch content, and grain yield were determined. LTS at booting caused a significant reduction in the net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (Tr) of the flag leaves at filling. The development of starch grains in the endosperm is also hindere, there are obvious equatorial grooves observed on the surface of the A-type starch granules, and a reduction in the number of B-type starch granules. The abundance of 13C in the flag leaves and grains decreased significantly. LTS also caused a significant reduction in translocation amount of pre-anthesis stored dry matte from vegetative organs to grains and amount of post-anthesis transfer of accumulated dry matte into grains, and the distribution rate of dry matter in the grains at maturity. The grain filling time was shortened, and the grain filling rate decreased. A decrease in the activity and relative expression of enzymes related to starch synthesis was also observed, with a decrease in the total starch content. As a result, a decrease in the grain number per panicle and 1000-grain weight were also observed. These findings highlight the underlying physiological cause of decreased starch content and grain weight after LTS in wheat.

14.
Exp Hematol ; 123: 46-55.e1, 2023 07.
Article En | MEDLINE | ID: mdl-37085039

Patients with diffuse large B-cell lymphoma (DLBCL) have unsatisfactory outcomes, especially when relapse occurs after initial chemotherapy. Platycodin D (PD), a triterpenoid saponin isolated from the root of Platycodon grandiflorum (Jacq.) A. DC., has demonstrated potent anticancer activities. However, information regarding the effect of PD on malignant lymphoma remains unavailable. In the present study, we showed that PD dose dependently inhibited the viability of a serial of established DLBCL cell lines representing different molecular subtypes, and their sensitivities to PD were comparable. Mitochondrial dysfunction and subsequent intrinsic apoptosis were induced by PD, as indicated by the loss of mitochondrial membrane potential (MMP) and the increase in the percentage of Annexin Ⅴ-positive cells. Mechanistically, PD treatment downregulated the expression levels of antiapoptotic proteins including MCL-1, BCL-2, and BCL-XL, whereas the expression level of proapoptotic protein BAK was upregulated, followed by the cleavage of the DNA repair enzyme PARP. Moreover, PD synergistically enhanced the cytotoxicity of BCL-2 inhibitor venetoclax. In a SUDHL-4-derived xenograft mouse model, the PD administration significantly constrained the tumor growth without obvious side effects. Therefore, our results provide new insights into the role of PD in lymphoma therapy.


Lymphoma, Large B-Cell, Diffuse , Saponins , Triterpenes , Humans , Animals , Mice , Neoplasm Recurrence, Local/drug therapy , Apoptosis , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Saponins/pharmacology , Saponins/therapeutic use , Triterpenes/pharmacology , Triterpenes/therapeutic use , Cell Proliferation , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/metabolism , Mitochondria/metabolism , Cell Line, Tumor
15.
Proc Natl Acad Sci U S A ; 120(14): e2216231120, 2023 04 04.
Article En | MEDLINE | ID: mdl-36976764

Histamine is a conserved neuromodulator in mammalian brains and critically involved in many physiological functions. Understanding the precise structure of the histaminergic network is the cornerstone in elucidating its function. Herein, using histidine decarboxylase (HDC)-CreERT2 mice and genetic labeling strategies, we reconstructed a whole-brain three dimensional (3D) structure of histaminergic neurons and their outputs at 0.32 × 0.32 × 2 µm3 pixel resolution with a cutting-edge fluorescence microoptical sectioning tomography system. We quantified the fluorescence density of all brain areas and found that histaminergic fiber density varied significantly among brain regions. The density of histaminergic fiber was positively correlated with the amount of histamine release induced by optogenetic stimulation or physiological aversive stimulation. Lastly, we reconstructed a fine morphological structure of 60 histaminergic neurons via sparse labeling and uncovered the largely heterogeneous projection pattern of individual histaminergic neurons. Collectively, this study reveals an unprecedented whole-brain quantitative analysis of histaminergic projections at the mesoscopic level, providing a foundation for future functional histaminergic study.


Brain , Histamine , Mice , Animals , Brain/metabolism , Neurons/metabolism , Brain Mapping , Histidine Decarboxylase/genetics , Histidine Decarboxylase/metabolism , Mammals/metabolism
16.
J Ethnopharmacol ; 305: 116111, 2023 Apr 06.
Article En | MEDLINE | ID: mdl-36592822

ETHNOPHARMACOLOGICAL RELEVANCE: Curcumae Rhizoma-Sparganii Rhizoma (CR-SR) is a classic herbal pair to promote blood circulation and remove blood stasis in ancient China. However, the molecular mechanism is still unclear. AIM OF STUDY: To screen out the anti-liver fibrosis active ingredients in CR-SR. Moreover, preliminary exploration the molecular mechanism of CR-SR to ameliorates liver fibrosis. MATERIALS AND METHODS: In this research, plant taxonomy has been confirmed in the "The Plant List" database (www.theplantlist.org). The chemical components of CR-SR were analysed by ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UPLC-Q/TOF-MS). "Component-Target-Pathway-Disease" network of CR-SR components were built by network pharmacology. Then, the interaction between primary components and predicted protein targets based on network pharmacology were validated by molecular docking. The pharmacological actions of CR-SR were verified by blood biochemical indexes, histopathologic examination of CCL4 induced rats' model. The core protein targets were verified by Western blot. The effects of screened active components by molecular autodocking were verified by HSC-T6 cell experiment. RESULTS: The result shows that 57 chemical constituents in CR-SR herbal pair were identified by UPLC-Q/TOF-MS, in which, 27 compounds were closely connected with liver fibrosis related protein targets. 55 protein targets screened out by "component-target-pathway-disease network" maybe the underlying targets for CR-SR to cure liver fibrosis. Moreover, the 55 protein targets are mainly related to RNA transcription, apoptosis, and signal transduction. The molecular autodocking predicted that ten components can bond well with PTGS2 and RELA protein targets. The blood biochemical indexes, histopathologic examination of CCL4 induced rats experiment showed that CR-SR has well intervention effect of liver fibrosis. The Western blot analysis indicated that CR-SR could significantly inhibit RELA, PTGS2, IL-6, SRC, and AKT1 protein expression to exert the anti-fibrosis effect. The HSC-T6 cell experiment indicated that both formononetin (FNT) and curdione could significantly inhibit the activation of HSC and reduce the expression of PTGS2, and p-AKT1 which was accordance with the molecular autodocking results. CONCLUSION: This study proved the molecular mechanism of CR-SR multi-component and multi-target anti-liver fibrosis effect through mass spectrometry, network pharmacology, and western blotting technology. The research provides a theoretical evidence for the development and utilization of CR-SR herbal pair.


Drugs, Chinese Herbal , Rats , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/analysis , Molecular Docking Simulation , Network Pharmacology , Cyclooxygenase 2 , Rhizome/chemistry
17.
Dalton Trans ; 52(2): 444-451, 2023 Jan 03.
Article En | MEDLINE | ID: mdl-36524722

Triboelectric nanogenerators (TENGs) based on contact electrification and electrostatic induction can effectively convert low-frequency mechanical energy into electrical energy and has attracted considerable attention. However, the low current output performance seriously hinders the wide application of TENGs. Herein, a 3D nanocrystalline metal-organic framework (Cd-MOF) with a specific structure and morphology was reasonably designed as a high-performance triboelectric positive electrode material. The triboelectric test results showed that the maximum instantaneous short-circuit current of Cd-MT was 55.32 µA and the stable output performance maintained a long-term continuous operation for 10 000 s. The peak values of the charge density and electric power density were 102.39 µC m-2 and 2451.04 mW m-2, respectively. In addition, the Cd-MT could quickly fully charge commercial capacitors and light a large number of LED lamps. This work provides a new idea for the development and design of functional MOF triboelectric materials.

18.
Br J Pharmacol ; 180(22): 2862-2879, 2023 11.
Article En | MEDLINE | ID: mdl-36111431

Fibrosis is a common process of tissue repair response to multiple injuries in all chronic progressive diseases, which features with excessive deposition of extracellular matrix. Fibrosis can occur in all organs and tends to be nonreversible with the progress of the disease. Different cells types in different organs are involved in the occurrence and development of fibrosis, that is, hepatic stellate cells, pancreatic stellate cells, fibroblasts and myofibroblasts. Various types of programmed cell death, including apoptosis, autophagy, ferroptosis and necroptosis, are closely related to organ fibrosis. Among these programmed cell death types, necroptosis, an emerging regulated cell death type, is regarded as a huge potential target to ameliorate organ fibrosis. In this review, we summarize the role of necroptosis signalling in organ fibrosis and collate the small molecule compounds targeting necroptosis. In addition, we discuss the potential challenges, opportunities and open questions in using necroptosis signalling as a potential target for antifibrotic therapies. LINKED ARTICLES: This article is part of a themed issue on Translational Advances in Fibrosis as a Therapeutic Target. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.22/issuetoc.


Extracellular Matrix , Necroptosis , Humans , Fibrosis , Extracellular Matrix/metabolism , Fibroblasts
19.
Article En | MEDLINE | ID: mdl-35957537

OBJECTIVE: This meta-analytic study examined the effects of exercise training on depressive symptoms in mild stroke patients and the moderating effects of exercise type, therapeutic method, culture, sex, and gross domestic product (GDP) in the patient's country. METHODS: The Metafor package in R was chosen to conduct the meta-analysis, and the quality of each empirical study was evaluated according to the grading system in Cochrane. We included 36 empirical studies and 1477 patients. RESULTS: The results showed that the treatment effect of exercise training on depression in mild stroke patients was significant. The moderating effects of culture and therapeutic method were significant, but not for exercise type, sex, or GDP in the patient's country. The moderating effect of culture can be explained by the therapeutic method in different cultures. CONCLUSION: Fitness exercise is an effective method for improving depressive symptoms in mild stroke patients. Its effectiveness is moderated by the therapeutic method but is not affected by demographics, exercise type, gender, or GDP level.


Depression , Stroke , Aged , Depression/etiology , Depression/therapy , Exercise , Exercise Therapy/methods , Humans , Middle Aged , Stroke/complications
20.
Environ Sci Pollut Res Int ; 29(54): 81222-81233, 2022 Nov.
Article En | MEDLINE | ID: mdl-35731441

Secondary metabolism, which helps a plant cope with external stress, is sensitive to environmental changes and plays a prominent role in maintaining plant health. However, few studies of the effects of tetracycline on the relationships between secondary metabolism and plant stress responses have been performed. Here, secondary metabolism, nutritional value, and oxidative stress responses in oilseed rape (Brassica napus L.) exposed to tetracycline for 14 days were investigated. Tetracycline inhibited growth and biomass accumulation and decreased the chlorophyll content. The sinapine, phenol, and flavonoid contents were 118.46%, 99.67%, and 93.07% higher, respectively, but the carotenoid content was 76.47% lower in plants exposed to 8 mg/L tetracycline than the control plants. Tetracycline affected the nutritional value of oilseed rape. Tetracycline decreased the dietary fiber, soluble sugar contents, and microelement (Fe, Mn, and Zn) contents. The antioxidant system also responded strongly to tetracycline. The catalase and peroxidase activities were increased and the superoxide dismutase activity was decreased by tetracycline. Tetracycline caused oxidative damage and secondary metabolite disturbances and adversely affected oilseed rape growth and quality. The results provide a new perspective on the effects of tetracycline on plants in relation to secondary metabolites and improve our understanding involved in the toxicity of tetracycline.


Brassica napus , Catalase/metabolism , Antioxidants/metabolism , Chlorophyll/metabolism , Superoxide Dismutase/metabolism , Nutritive Value , Phenols/metabolism , Carotenoids/metabolism , Flavonoids/pharmacology , Sugars/metabolism , Dietary Fiber , Tetracyclines/pharmacology
...