Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell Biol ; 33(16): 3099-112, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23754753

RESUMEN

Improving the knowledge of disease-causing genes is a unique challenge in human health. Although it is known that genes causing similar diseases tend to lie close to one another in a network of protein-protein or functional interactions, the identification of these protein-protein networks is difficult to unravel. Here, we show that Msx1, Snail, Lhx6, Lhx8, Sp3, and Lef1 interact in vitro and in vivo, revealing the existence of a novel context-specific protein network. These proteins are all expressed in the neural crest-derived dental mesenchyme and cause tooth agenesis disorder when mutated in mouse and/or human. We also identified an in vivo direct target for Msx1 function, the cyclin D-dependent kinase (CDK) inhibitor p19(ink4d), whose transcription is differentially modulated by the protein network. Considering the important role of p19(ink4d) as a cell cycle regulator, these results provide evidence for the first time of the unique plasticity of the Msx1-dependent network of proteins in conferring differential transcriptional output and in controlling the cell cycle through the regulation of a cyclin D-dependent kinase inhibitor. Collectively, these data reveal a novel protein network operating in the neural crest-derived dental mesenchyme that is relevant for many other areas of developmental and evolutionary biology.


Asunto(s)
Proteínas con Homeodominio LIM/metabolismo , Factor de Transcripción MSX1/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Mapas de Interacción de Proteínas , Diente/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Inhibidor p19 de las Quinasas Dependientes de la Ciclina/genética , Humanos , Proteínas con Homeodominio LIM/análisis , Factor de Transcripción MSX1/análisis , Ratones , Morfogénesis , Proteínas del Tejido Nervioso/análisis , Regiones Promotoras Genéticas , Unión Proteica , Factores de Transcripción de la Familia Snail , Diente/metabolismo , Factores de Transcripción/análisis , Activación Transcripcional
2.
Development ; 140(13): 2697-702, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23720046

RESUMEN

Bmp4 expression is tightly regulated during embryonic tooth development, with early expression in the dental epithelial placode leading to later expression in the dental mesenchyme. Msx1 is among several transcription factors that are induced by epithelial Bmp4 and that, in turn, are necessary for the induction and maintenance of dental mesenchymal Bmp4 expression. Thus, Msx1(-/-) teeth arrest at early bud stage and show loss of Bmp4 expression in the mesenchyme. Ectopic expression of Bmp4 rescues this bud stage arrest. We have identified Tbx2 expression in the dental mesenchyme at bud stage and show that this can be induced by epithelial Bmp4. We also show that endogenous Tbx2 and Msx1 can physically interact in mouse C3H10T1/2 cells. In order to ascertain a functional relationship between Msx1 and Tbx2 in tooth development, we crossed Tbx2 and Msx1 mutant mice. Our data show that the bud stage tooth arrest in Msx1(-/-) mice is partially rescued in Msx1(-/-);Tbx2(+/-) compound mutants. This rescue is accompanied by formation of the enamel knot (EK) and by restoration of mesenchymal Bmp4 expression. Finally, knockdown of Tbx2 in C3H10T1/2 cells results in an increase in Bmp4 expression. Together, these data identify a novel role for Tbx2 in tooth development and suggest that, following their induction by epithelial Bmp4, Msx1 and Tbx2 in turn antagonistically regulate odontogenic activity that leads to EK formation and to mesenchymal Bmp4 expression at the key bud-to-cap stage transition.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Factor de Transcripción MSX1/metabolismo , Proteínas de Dominio T Box/metabolismo , Diente/embriología , Diente/metabolismo , Animales , Proteína Morfogenética Ósea 4/genética , Línea Celular , Inmunohistoquímica , Inmunoprecipitación , Hibridación in Situ , Factor de Transcripción MSX1/genética , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Ratones Mutantes , Odontogénesis/genética , Odontogénesis/fisiología , Unión Proteica , Proteínas de Dominio T Box/genética
3.
Proc Natl Acad Sci U S A ; 108(48): 19270-5, 2011 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-22084104

RESUMEN

Timing of organ development during embryogenesis is coordinated such that at birth, organ and fetal size and maturity are appropriately proportioned. The extent to which local developmental timers are integrated with each other and with the signaling interactions that regulate morphogenesis to achieve this end is not understood. Using the absolute requirement for a signaling pathway activity (bone morphogenetic protein, BMP) during a critical stage of tooth development, we show that suboptimal levels of BMP signaling do not lead to abnormal morphogenesis, as suggested by mutants affecting BMP signaling, but to a 24-h stalling of the intrinsic developmental clock of the tooth. During this time, BMP levels accumulate to reach critical levels whereupon tooth development restarts, accelerates to catch up with development of the rest of the embryo and completes normal morphogenesis. This suggests that individual organs can autonomously control their developmental timing to adjust their stage of development to that of other organs. We also find that although BMP signaling is critical for the bud-to-cap transition in all teeth, levels of BMP signaling are regulated differently in multicusped teeth. We identify an interaction between two homeodomain transcription factors, Barx1 and Msx1, which is responsible for setting critical levels of BMP activity in multicusped teeth and provides evidence that correlates the levels of Barx1 transcriptional activity with cuspal complexity. This study highlights the importance of absolute levels of signaling activity for development and illustrates remarkable self-regulation in organogenesis that ensures coordination of developmental processes such that timing is subordinate to developmental structure.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de Homeodominio/metabolismo , Factor de Transcripción MSX1/metabolismo , Odontogénesis/fisiología , Transducción de Señal/fisiología , Diente/embriología , Factores de Transcripción/metabolismo , Factores de Edad , Animales , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , Hibridación in Situ , Ratones , Ratones Noqueados , Microtomografía por Rayos X
4.
J Biol Chem ; 285(7): 4771-80, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-20007692

RESUMEN

Lysine 48-linked polyubiquitin chains usually target proteins for 26 S proteasomal degradation; however, this modification is not a warrant for destruction. Here, we found that efficient degradation of a physiological substrate UbcH10 requires not only an exogenous polyubiquitin chain modification but also its unstructured N-terminal region. Interestingly, the unstructured N-terminal region of UbcH10 directly binds the 19 S regulatory complex of the 26 S proteasome, and it mediates the initiation of substrate translocation. To promote ubiquitin-dependent degradation of the folded domains of UbcH10, its N-terminal region can be displaced by exogenous proteasomal binding elements. Moreover, the unstructured N-terminal region can initiate substrate translocation even when UbcH10 is artificially cyclized without a free terminus. Polyubiquitinated circular UbcH10 is completely degraded by the 26 S proteasome. Accordingly, we propose that degradation of some polyubiquitinated proteins requires two binding interactions: a polyubiquitin chain and an intrinsic proteasomal binding element in the substrates (likely an unstructured region); moreover, the intrinsic proteasomal binding element initiates substrate translocation regardless of its location in the substrates.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/metabolismo , Sitios de Unión/genética , Sitios de Unión/fisiología , Cromatografía en Gel , Dicroismo Circular , Espectrometría de Masas , Poliubiquitina/metabolismo , Pliegue de Proteína , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Enzimas Ubiquitina-Conjugadoras/genética
5.
Artículo en Inglés | MEDLINE | ID: mdl-16880566

RESUMEN

Polyhydroxyalkanoate (PHA) granule-associated proteins (phasins) were discovered in PHA-accumulating bacteria. They play a crucial role as a structural protein during initial PHA-granule formation and granule growth and also serve as interfaces for granule stabilization in vivo. The phasin PhaP(Ah) from Aeromonas hydrophila strain 4AK4 was crystallized using the hanging-drop vapour-diffusion method. Single crystals were cryocooled for X-ray diffraction analysis. The phasin crystals belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 80.8, b = 108.9, c = 134.4 angstroms.


Asunto(s)
Aciltransferasas/química , Aeromonas hydrophila/química , Aciltransferasas/aislamiento & purificación , Proteínas Bacterianas/química , Secuencia de Bases , Clonación Molecular , Cristalización , Cartilla de ADN , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Mapeo Restrictivo , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...