Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Nanoscale ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990172

RESUMEN

Functional mesoporous carbon nanomaterials with large pores and small particle sizes have broad accessibility, but remain challenging to achieve. This study proposed a dual-template synergistic assembly strategy to facilely synthesize extra-small nitrogen-doped mesoporous carbon nanospheres with large pores in a low-cost manner. Directed by the synergistic effect of the combination of surfactants, sodium oleate (anionic surfactant) and triblock copolymer-P123 (nonionic surfactant) were selected as templates to construct nanomicelles (nanoemulsions), which were co-assembled with melamine-based oligomers to form composite nanomicelles, thus obtaining nitrogen-doped mesoporous polymer nanospheres (NMePS) and then nitrogen-doped mesoporous carbon nanospheres (NMeCS). Based on Schiff base chemistry, the melamine-based oligomers with self-assembly capability were synthesized as precursors, which is different from the conventional synthetic route of melamine-formaldehyde resin. The key parameters involved in the route were investigated comprehensively and correlated with the characterization results. Furthermore, the 50 nm-scale particle size and the large mesoporous size of 5.5 nm of NMeCS can facilitate effective mass transport, coupled with their high nitrogen content (15.7 wt%), contributing to their excellent performance in lithium-ion batteries.

2.
Nat Commun ; 15(1): 6147, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39034334

RESUMEN

Developing devices with a wide-temperature range persistent photoconductivity (PPC) and ultra-low power consumption remains a significant challenge for optical synaptic devices used in neuromorphic computing. By harnessing the PPC properties in materials, it can achieve optical storage and neuromorphic computing, surpassing the von Neuman architecture-based systems. However, previous research implemented PPC required additional gate voltages and low temperatures, which need additional energy consumption and PPC cannot be achieved across a wide temperature range. Here, we fabricated a simple heterojunctions using zinc(II)-meso-tetraphenyl porphyrin (ZnTPP) and single-walled carbon nanotubes (SWCNTs). By leveraging the strong binding energy at the heterojunction interface and the unique band structure, the heterojunction achieved PPC over an exceptionally wide temperature range (77 K-400 K). Remarkably, it demonstrated nonvolatile storage for up to 2×104 s, without additional gate voltage. The minimum energy consumption for each synaptic event is as low as 6.5 aJ. Furthermore, we successfully demonstrate the feasibility to manufacture a flexible wafer-scale array utilizing this heterojunction. We applied it to autonomous driving under extreme temperatures and achieved as a high impressive accuracy rate as 94.5%. This tunable and stable wide-temperature PPC capability holds promise for ultra-low-power neuromorphic computing.

3.
PLoS One ; 19(7): e0304516, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38950289

RESUMEN

BACKGROUND: The connection between urinary bisphenol A (BPA) and hyperlipidemia is still unclear, and few studies have evaluated whether urinary BPA affects mortality among individuals with hyperlipidemia. Therefore, we aimed to investigate the link between urinary BPA and hyperlipidemia and assess the impact of urinary BPA on mortality risk in subjects with hyperlipidemia. METHODS: We analyzed data of the National Health and Nutrition Examination Survey from 2003 to 2016. Multivariable logistic analysis was performed to examine the relationship between urinary BPA and hyperlipidemia. Cox regression analysis was carried out to investigate the relationship between urinary BPA and all-cause mortality in subjects with hyperlipidemia. RESULTS: This study included 8,983 participants, of whom 6,317 (70.3%) were diagnosed with hyperlipidemia. The results showed that urinary BPA was higher in participants with hyperlipidemia group than those without hyperlipidemia (3.87 ± 0.32 vs. 2.98 ± 0.14, P = 0.01). Urinary BPA levels were analyzed in tertiles. Compared with tertile 1 of BPA (reference), the odds ratio (95% confidence interval) of hyperlipidemia related to tertile 3 of BPA was 1.28 (1.11-1.48). The hazard ratio for all-cause death associated with the highest versus lowest tertile of urinary BPA was 1.20 (95% confidence interval: 1.01-1.44; P = 0.04) among participants with hyperlipidemia. CONCLUSIONS: The study indicated a positive relationship between urinary BPA and the risk of hyperlipidemia. Urinary BPA was associated with a significantly higher risk of all-cause mortality in adults with hyperlipidemia.


Asunto(s)
Compuestos de Bencidrilo , Hiperlipidemias , Encuestas Nutricionales , Fenoles , Humanos , Fenoles/orina , Compuestos de Bencidrilo/orina , Compuestos de Bencidrilo/efectos adversos , Hiperlipidemias/orina , Hiperlipidemias/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Adulto , Anciano
4.
Sci Adv ; 10(18): eadl5067, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701201

RESUMEN

Airborne pathogens retain prolonged infectious activity once attached to the indoor environment, posing a pervasive threat to public health. Conventional air filters suffer from ineffective inactivation of the physics-separated microorganisms, and the chemical-based antimicrobial materials face challenges of poor stability/efficiency and inefficient viral inactivation. We, therefore, developed a rapid, reliable antimicrobial method against the attached indoor bacteria/viruses using a large-scale tunneling charge-motivated disinfection device fabricated by directly dispersing monolayer graphene on insulators. Free charges can be stably immobilized under the monolayer graphene through the tunneling effect. The stored charges can motivate continuous electron loss of attached microorganisms for accelerated disinfection, overcoming the diffusion limitation of chemical disinfectants. Complete (>99.99%) and broad-spectrum disinfection was achieved <1 min of attachment to the scaled-up device (25 square centimeters), reliably for 72 hours at high temperature (60°C) and humidity (90%). This method can be readily applied to high-touch surfaces in indoor environments for pathogen control.


Asunto(s)
Desinfección , Electrónica , Grafito , Desinfección/métodos , Electrónica/métodos , Grafito/química , Viabilidad Microbiana , Bacterias
5.
Water Res ; 254: 121378, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38430758

RESUMEN

This study delved into the efficacy of sludge digestion and the mechanisms involved in sludge destruction during the implementation of forward osmosis process for sludge thickening and digestion (FO-MSTD). Utilizing a lab-scale FO membrane reactor for the thickening and digestion of waste activated sludge (WAS), the investigation explored the effects of sludge thickening and digestion in FO-MSTD processes using draw solutions of varying concentrations. The findings underscored the significance of hydraulic retention time (HRT) as a pivotal parameter influencing the swift thickening or profound digestion of sludge. Consequently, tailoring the HRT to specific processing objectives emerged as a key strategy for achieving desired treatment outcomes. In the investigation, the use of a 1 M NaCl draw solution in the FO-MSTD process showcased enhanced thickening and digestion capabilities. This specific setup raised the concentration of mixed liquor suspended solids (MLSS) to over 30 g/L and achieved a 42.7% digestion efficiency of mixed liquor volatile suspended solids (MLVSS) within an operational timeframe of 18 days. Furthermore, the research unveiled distinct stages in the sludge digestion process of the FO-MSTD system, characterized by fully aerobic digestion and aerobic-local anaerobic co-existing digestion. In the fully aerobic digestion stage, the sludge digestion rate exhibited a steady increase, leading to the breakdown of sludge floc structures and the release of a substantial amount of nutrients into the sludge supernatant. The predominant microorganisms during this stage were typical functional microorganisms found in wastewater treatment systems. Transitioning into the aerobic-local anaerobic co-existing digestion stage, both MLSS concentration and MLVSS digestion efficiency continued to rise, accompanied by a decreasing dissolved oxygen (DO) concentration. More organic matter was released into the supernatant, and sludge microbial flocs tended to reaggregate. The localized anaerobic environment within the FO-MSTD reactor fostered an increase in the relative abundance of bacteria with nitrogen and phosphorus removal functions, thereby positively impacting the mitigation of total nitrogen (TN) and total phosphorus (TP) concentrations in the sludge supernatant. The results of this research enhance comprehension of the advanced FO-MSTD technology in the treatment of WAS.


Asunto(s)
Fósforo , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Ósmosis , Fósforo/metabolismo , Nitrógeno , Digestión , Reactores Biológicos , Eliminación de Residuos Líquidos/métodos
6.
Bioresour Technol ; 399: 130644, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552856

RESUMEN

To address the low-carbon treatment requirements for municipal wastewater, a novel anaerobic acidification membrane bioreactor (AAMBR) was developed for recovering organic matter in terms of volatile fatty acids (VFAs). While the AAMBR successfully generated VFAs from municipal wastewater through forward osmosis (FO) membrane concentration, its operation was limited to a single pH value of 10.0. Here, performance of the AAMBR operating at acidic condition was evaluated and compared with that at alkaline condition. The findings revealed that the AAMBR with pH 5.0 efficiently transformed organic matter into acetic acid, propionic acid, and butyric acid, resulting in a VFAs yield of 0.48 g/g-CODfeed. In comparison with the AAMBR at pH 10.0, this study achieved a similar VFAs yield, a lower fouling tendency, a lower loss of nutrients and a lower controlling cost. In conclusion, this study demonstrated that a pH of 5.0 is optimal for the AAMBR treating municipal wastewater.


Asunto(s)
Reactores Biológicos , Aguas Residuales , Anaerobiosis , Ácidos Grasos Volátiles , Concentración de Iones de Hidrógeno , Membranas Artificiales
7.
J Am Chem Soc ; 146(9): 6231-6239, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38386884

RESUMEN

Acquiring a deep insight into the electron transfer mechanism and applications of one-dimensional (1D) van der Waals heterostructures (vdWHs) has always been a significant challenge. Herein, through direct observation using aberration-corrected transmission electron microscopy (AC-TEM), we verify the stable formation of a high-quality 1D heterostructure composed of PbI2@single-walled carbon nanotubes (SWCNTs). The phenomenon of electron transfer between PbI2 and SWCNT is elucidated through spectroscopic investigations, including Raman and X-ray photoelectron spectroscopy (XPS). Electrochemical testing indicates the electron transfer and enduring stability of 1D PbI2 within SWCNTs. Moreover, leveraging the aforementioned electron transfer mechanism, we engineer self-powered photodetectors that exhibit exceptional photocurrent and a 3-order-of-magnitude switching ratio. Subsequently, we reveal its unique electron transfer behavior using Kelvin probe force microscopic (KPFM) tests. According to KPFM, the average surface potential of SWCNTs decreases by 80.6 mV after filling. Theoretical calculations illustrate a charge transfer of 0.02 e per unit cell. This work provides an effective strategy for the in-depth investigation and application of electron transfer in 1D vdWHs.

8.
ACS Appl Mater Interfaces ; 16(1): 1317-1325, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38118048

RESUMEN

Piezoelectric nanogenerators (PENGs) with molybdenum disulfide (MoS2) monolayers have been intensively studied owing to their superior mechanical durability and stability. However, the limited output performance resulting from a small active area and low strain levels continues to pose a significant challenge that should be overcome. Herein, we report a novel strategy for the epoch-making output performance of a PENG with a MoS2 monolayer by adopting the additive strain concentration concept. The simulation study indicates that strain in the MoS2 monolayer can be initially augmented by the wavy structure resulting from the prestretched poly(dimethylsiloxane) (PDMS) and is further increased through flexural deformation (i.e., bending). Based on these studies, we have developed concentrated strain-applied PENGs with MoS2 monolayers. The wavy structures effectively applied strain to the MoS2 monolayer and generated a piezoelectric output voltage and current of around 580 mV and 47.5 nA, respectively. Our innovative approach to enhancing the performance of PENGs with MoS2 monolayers through the artificial dual strain concept has led to groundbreaking results, achieving the highest recorded output voltage and current for PENGs based on two-dimensional (2D) materials, which provides unique opportunities for the 2D-based energy harvesting field and structural insight into how to improve the net strain on 2D materials.

9.
Heliyon ; 9(12): e22858, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38125524

RESUMEN

Background: The benefits and risks of adjuvant-associated COVID-19 vaccines (ACVs) are unclear. The study aimed to assess the immunogenicity and safety of ACVs compared with controls (placebo or the same vaccine without adjuvants [NACVs]). Methods: Randomized controlled trials sourced from PubMed, EMBASE, Web of Science, and Cochrane Library were systematically reviewed. Evaluators extracted information independently. The evidence quality was assessed using random-effects models. The risk of bias was assessed using the Cochrane Risk of Bias tool. Results: Of the 33 studies, 27 analyzed immunogenicity (n = 9069, ACVs group; n = 3757, control), and 26 analyzed safety (n = 58669, ACVs groups; n = 30733 control). Compared with controls, full vaccination with ACVs produced significant immune responses (relative risk [RR] of seroneutralization reaction, 12.3; 95 % confidence interval [95 % CI], 6.92-21.89; standardized mean deviation of geometric mean titer 3.96, 95 % CI, 3.35-4.58). Additionally, ACVs produced significant immunoreactivity compared with NACVs only (P < 0.05). Furthermore, full vaccination with ACVs significantly increased the risk of local and systemic adverse reactions (AEs) compared with controls. However, vaccination with ACVs did not significantly increase the risk of systemic and localized AEs compared with vaccination with NACVs only (P > 0.05). It was observed that ACVs had a lower risk of all-cause mortality than controls (RR, 0.51; 95 % CI 0.30-0.87). It was further found that ACVs produced nAb response against all sublines of the Omicron variant, but the antibody titers were lower than those for the SARS-CoV-2 original strain. Conclusions: The findings of this meta-analysis demonstrate that ACVs may have a superior effect and an acceptable safety in preventing COVID-19. Although these results suggest the potential of ACVs, further studies are required.

10.
J Am Chem Soc ; 145(44): 24349-24357, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37883799

RESUMEN

Understanding the interplay between the surface structure and the passivation materials and their effects associated with surface structure modification is of fundamental importance; however, it remains an unsolved problem in the perovskite passivation field. Here, we report a surface passivation principle for efficient perovskite solar cells via a facet-dependent passivation phenomenon. The passivation process selectively occurs on facets, which is observed with various post-treatment materials with different functionality, and the atomic arrangements of the facets determine the alignments of the passivation layers. The profound understanding of facet-dependent passivation leads to the finding of 2-amidinopyridine hydroiodide as the material for a uniform and effective passivation on both (100) and (111) facets. Consequently, we achieved perovskite solar cells with an efficiency of 25.10% and enhanced stability. The concept of facet-dependent passivation can provide an important clue on unidentified passivation principles for perovskite materials and a novel means to enhance the performance and stability of perovskite-based devices.

11.
Water Res ; 245: 120595, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37708772

RESUMEN

In order to meet the demand of municipal wastewater for low-carbon treatment and resource recovery, a novel process of anaerobic acidification membrane bioreactor (AAMBR) assisted with a two-stage forward osmosis (FO) (FO-AAMBR-FO) was developed for simultaneously recovering organic matter and nutrients from municipal wastewater. The results indicated that the first FO process concentrated the municipal wastewater to one tenth of the initial volume. The corresponding chemical oxygen demand (COD), ammonia nitrogen (NH4+-N) and total phosphorus (TP) concentration reached up to 2800, 200 and 33 mg/L, respectively. Subsequently, the AAMBR was operated at pH value of 10 for treating the concentration of municipal wastewater, in which the organic matter was successfully converted to acetic acid and propionic acid with a total volatile fatty acids (VFAs) concentration of 1787 mg COD/L and a VFAs production efficiency of 62.36 % during 47 days of stable operation. After that, the NH4+-N and TP concentration in the effluent of the AAMBR were further concentrated to 175 and 36.7 mg/L, respectively, by the second FO process. The struvite was successfully recovered with NH4+-N and TP recovery rate of 94.53 % and 98.59 %, respectively. Correspondingly, the VFAs, NH4+-N and TP concentrations in the residual solution were 2905 mg COD/L, 11.8 and 7.92 mg/L, respectively, which could be used as the raw material for the synthesis of polyhydroxyalkanoate (PHA). Results reported here demonstrated that the FO-AAMBR-FO is a promising wastewater treatment technology for simultaneous recovery of organic matter (in form of VFAs) and nutrients (in form of struvite).


Asunto(s)
Aguas Residuales , Purificación del Agua , Anaerobiosis , Fósforo , Nitrógeno , Estruvita , Ósmosis , Reactores Biológicos , Ácidos Grasos Volátiles , Concentración de Iones de Hidrógeno , Membranas Artificiales , Purificación del Agua/métodos
12.
Molecules ; 28(14)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37513488

RESUMEN

A catalyst-free aza-Michael addition/C(sp3)-O bond formation tandem reaction of substituted amino ferrocenes with quinone esters was developed, which provided a green and efficient strategy for the construction of a C(sp3)-O bond from C(sp3)-H, and a series of N-ferrocene-substituted benzodihydrooxazoles were smoothly produced in moderate to excellent yields (up to >99% yield). The mechanism experiments showed that quinone esters performed as both substrate and oxidant. The salient features of this transformation include good functional group tolerance, broad substrate scope and mild conditions.

13.
Ther Adv Reprod Health ; 17: 26334941231188656, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37497119

RESUMEN

Many factors associated with assisted reproductive technologies significantly influence the success of pregnancy after in vitro fertilization (IVF) either directly or indirectly. These factors include sperm processing techniques, egg retrieval, intrauterine artificial insemination, intracytoplasmic sperm injection, and embryo transfer. Among these technologies, sperm quality is one of the most critical factors for a successful IVF pregnancy. The method used for sperm processing plays a crucial role in determining the quality of sperm. Several widely used sorting techniques, such as conventional swim-up, density gradient centrifugation, magnetic activated cell sorting, and hyaluronic acid, have been extensively compared in various studies. Previous studies have shown that each sperm processing method causes varying degrees of sperm damage, particularly in sperm motility, concentration, morphological features, viability, and DNA integrity. However, sperm processing techniques have been developed slowly, and the impact of these methods on pregnancy rates is still unclear. Further exploration is needed. In this review, we aim to compare the results of different sperm processing techniques concerning sperm quality and IVF pregnancy rates. We will also discuss possible clinical approaches, such as microfluidics and integrated approaches, for testing and improving sperm quality.

14.
Immunobiology ; 228(5): 152708, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37523793

RESUMEN

The role of programmed cell death 1 (PD1) in cancer immune evasion is of considerable importance, prompting the development of monoclonal antibodies that specifically target PD-1 to enhance the immune system for cancer therapy. Nevertheless, the efficacy of PD1/programmed cell death-Ligand 1 (PD-L1) blocking antibodies is limited to certain patients or tumor types. Although researchers have demonstrated the influence of PD-1 on the positive selection of T cells, its effect on the T-cell repertoire remains uncertain. Lymphoid enhancer binding factor 1 (LEF1) has been known to play a critical role as a transcription factor in the development and maturation of T cells. Despite the greater focus on the study of its homologous protein, T cell factor 1 (TCF1), we discovered that LEF1 had a positive regulatory effect on the transcription of PD1 in mature T cells, including CD4+ T cells, CD8+ T cells, and Treg cells. This finding was observed in LEF1 knockout and LEF1-stimulated mice models. Additionally, we confirmed the direct regulation of PD1 by LEF1 in tumor-infiltrating lymphocytes through tumor-implantation experiments. The direct regulation of PD1 by LEF1 was further validated in the LEF1 knockout cell line. The results of our study provide novel perspectives on the regulation of PD1 in immune responses and investigate potential approaches for clinical anti-PD1 therapy.


Asunto(s)
Neoplasias , Receptor de Muerte Celular Programada 1 , Animales , Ratones , Antígeno B7-H1/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos , Factor de Unión 1 al Potenciador Linfoide/genética , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Neoplasias/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Humanos
15.
Mol Neurobiol ; 60(10): 5655-5671, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37335462

RESUMEN

Paired immunoglobulin-like receptor B (PirB) was identified as a myelin-associated inhibitory protein (MAIP) receptor that plays a critical role in axonal regeneration, synaptic plasticity and neuronal survival after stroke. In our previous study, a transactivator of transcription-PirB extracellular peptide (TAT-PEP) was generated that can block the interactions between MAIs and PirB. We found that TAT-PEP treatment improved axonal regeneration, CST projection and long-term neurobehavioural recovery after stroke through its effects on PirB-mediated downstream signalling. However, the effect of TAT-PEP on the recovery of cognitive function and the survival of neurons also needs to be investigated. In this study, we investigated whether pirb RNAi could alleviate neuronal injury by inhibiting the expression of PirB following exposure to oxygen-glucose deprivation (OGD) in vitro. In addition, TAT-PEP treatment attenuated the volume of the brain infarct and promoted the recovery of neurobehavioural function and cognitive function. This study also found that TAT-PEP exerts neuroprotection by reducing neuronal degeneration and apoptosis after ischemia-reperfusion injury. In addition, TAT-PEP improved neuron survival and reduced lactate dehydrogenase (LDH) release in vitro. Results also showed that TAT-PEP reduced malondialdehyde (MDA) levels, increased superoxide dismutase (SOD) activity and reduced reactive oxygen species (ROS) accumulation in OGD-injured neurons. The possible mechanism was that TAT-PEP could contribute to the damage of neuronal mitochondria and affect the expression of cleaved caspase 3, Bax and Bcl-2. Our results suggest that PirB overexpression in neurons after ischaemic-reperfusion injury induces neuronal mitochondrial damage, oxidative stress and apoptosis. This study also suggests that TAT-PEP may be a potent neuroprotectant with therapeutic potential for stroke by reducing neuronal oxidative stress, mitochondrial damage, degeneration and apoptosis in ischemic stroke.


Asunto(s)
Isquemia Encefálica , Disfunción Cognitiva , Daño por Reperfusión , Accidente Cerebrovascular , Humanos , Transactivadores/metabolismo , Neuronas/metabolismo , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo , Péptidos/farmacología , Oxígeno/metabolismo , Proteínas de la Mielina/metabolismo , Apoptosis , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Daño por Reperfusión/complicaciones , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Isquemia Encefálica/complicaciones , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo
16.
Eur J Pharmacol ; 947: 175667, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36997050

RESUMEN

Post-stroke anxiety (PSA) is a kind of affective disorder occurring after a stroke, with anxiety as the primary clinical manifestation. PSA's mechanism is unclear, and there are few prevention and treatment measures. Our previous study found that HDAC3 could activate NF-κB signaling through mediated p65 deacetylation, which further influenced microglia activation. That implies HDAC3 may be the key mediator in ischemic stroke mice and modulates anxiety susceptibility to stress. This study established a PSA model in male C57BL/6 mice through photothrombotic stroke combined with chronic restrain stress. We focused on exploring whether esketamine administration can alleviate anxiety-like behavior and neuroinflammation, which may be associated with inhibiting HDAC3 expression and NF-κB pathway activation. The results showed that esketamine administration alleviated anxiety-like behavior in PSA mice. And the results showed that esketamine alleviated cortical microglial activation, altered microglial number, and kept morphology features. Furthermore, the results showed that the expression of HDAC3, phosphor-p65/p65, and COX1 significantly decreased in esketamine-treated PSA mice. Besides, we also found that esketamine reduced PGE2 expression, one of the primary regulators of negative emotions. Interestingly, our results indicate that esketamine reduced the perineuronal net (PNN) number in the pathological process of PSA. In conclusion, this study suggests esketamine could alleviate microglial activation, reduces inflammatory cytokine, and inhibits the expression of HDAC3 and NF-κB in the cortex of PSA mice to attenuate anxiety-like behavior. Our results provided a new potential therapeutic target for applying esketamine to PSA.


Asunto(s)
FN-kappa B , Accidente Cerebrovascular , Masculino , Ratones , Animales , FN-kappa B/metabolismo , Microglía/metabolismo , Ratones Endogámicos C57BL , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo , Ansiedad/tratamiento farmacológico , Ansiedad/etiología
17.
Biochem Biophys Rep ; 34: 101457, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36942321

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is a type of aggressive hematologic malignancy. It progresses quickly and it is likely to be fatal within a few months without treatment. Despite the limitations of current clinical therapies, there is an urgent need for novel and targeted therapies. To explore potential targeted therapies, molecular genetic mechanisms of T-ALL metastasis must be uncovered. However, the genes and mechanisms that mediate T-ALL metastasis are largely unknown. Recent insights into T-ALL biology have identified several genes that can be grouped into several targetable signaling pathways. The Wnt/ß-catenin signaling pathway is one of the most important pathways. Our work investigated the functions of TCF1 and LEF1 in cell growth and migration mediated by the Wnt signaling pathway. We found that TCF1 and LEF1 knockdown weakly repressed T-ALL cell proliferation but distinctly impaired cell migration. T-ALL metastasis is dependent on cell migration and invasion. Our results displayed that TCF1 and LEF1 regulated T-ALL cell migration by the Wnt-dependent chemokine and cytokine-induced inflammation and cadherin signaling pathways. By transcriptionally regulating these pathways-associated genes, TCF1 and LEF1 inhibited cell adhesion and promoted cell migration and invasion.

18.
J Org Chem ; 88(5): 2841-2850, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36812409

RESUMEN

We demonstrated here an efficient synthetic method of carbazole derivatives from readily available N-arylnaphthalen-2-amines and quinone esters catalyzed by Brønsted acid. With this strategy, a series of carbazole derivatives were obtained in good to excellent yields (76 to >99) under mild conditions. Large scale reaction illustrated the synthetic utility of this protocol. Meanwhile, a series of C-N axially chiral carbazole derivatives were also constructed in moderate to good yields (36-89% yield) with moderate to excellent atroposelectivities (44-94% ee) by using chiral phosphoric acid as a catalyst, which provides a novel strategy for the atroposelective construction of C-N axially chiral compounds and a new member of the C-N atropisomers.

19.
Adv Sci (Weinh) ; 10(3): e2204801, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36437039

RESUMEN

To prevent surgical site infection (SSI), which significantly increases the rate morbidity and mortality, eliminating microorganisms is prominent. Antimicrobial resistance is identified as a global health challenge. This work proposes a new strategy to eliminate microorganisms of deep tissue through electrical stimulation with an ultrasound (US)-driven implantable, biodegradable, and vibrant triboelectric nanogenerator (IBV-TENG). After a programmed lifetime, the IBV-TENG can be eliminated by provoking the on-demand device dissolution by controlling US intensity with no surgical removal of the device from the body. A voltage of ≈4 V and current of ≈22 µA generated from IBV-TENG under ultrasound in vitro, confirming inactivating ≈100% of Staphylococcus aureus and ≈99% of Escherichia coli. Furthermore, ex vivo results show that IBV-TENG implanted under porcine tissue successfully inactivates bacteria. This antibacterial technology is expected to be a countermeasure strategy against SSIs, increasing life expectancy and healthcare quality by preventing microorganisms of deep tissue.


Asunto(s)
Antibacterianos , Infecciones Estafilocócicas , Animales , Porcinos , Ultrasonografía , Antibacterianos/uso terapéutico , Estimulación Eléctrica , Escherichia coli
20.
J Hazard Mater ; 443(Pt A): 130170, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36265376

RESUMEN

Per-and polyfluoroalkyl substances (PFASs) are omnipresent globally and received increasing attention recently. However, there are limited data on PFASs in the Tibetan Plateau (TP), a remote high-altitude mountain region, which is regard as an important indicator region to study long-range transport behaviors of contaminants. This study investigates the occurrence, distribution, partitioning behavior, and sources of 26 PFASs in water and sediments from the four lakes of TP. The ΣPFAS concentrations ranged from 338 to 9766 pg L-1 in water, and 12.2-414 pg g-1 dry weight in sediments. Perfluorobutanonic acid (PFBA) and perfluorooctane sulfonate (PFOS) were detected in all samples. Qinghai Lake had the highest ΣPFAS concentrations in both water and sediments, while the Ranwu Lake had the lowest. The functional groups and CF2 moiety units were investigated as essential factors influencing the partition behavior. Principal component analysis (PCA) combined back-trajectory was used to infer possible sources of PFASs. The results suggested that the main source of PFASs in Yamdrok Lake, Namco Lake, and Ranwu Lake on southern TP were mainly originated from South Asia via long-range atmospheric transport (LRAT); while for the Qinghai Lake of northern TP, LRAT, local emissions, and tourism activities were the primary sources of PFASs.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Lagos , Fluorocarburos/análisis , Agua/análisis , Sedimentos Geológicos , Monitoreo del Ambiente/métodos , Tibet , Contaminantes Químicos del Agua/análisis , Ácidos Alcanesulfónicos/análisis , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA