Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 90
1.
Polymers (Basel) ; 16(10)2024 May 14.
Article En | MEDLINE | ID: mdl-38794594

Polyaniline (PANI) has long been explored as a promising organic cathode for Li-ion batteries. However, its poor electrochemical utilization and cycling instability cast doubt on its potential for practical applications. In this work, we revisit the electrochemical performance of PANI in nonaqueous electrolytes, and reveal an unprecedented reversible capacity of 197.2 mAh g-1 (244.8 F g-1) when cycled in a wide potential range of 1.5 to 4.4 V vs. Li+/Li. This ultra-high capacity derives from 70% -NH- transformed to =NH+- during deep charging/discharging process. This material also demonstrates a high average coulombic efficiency of 98%, an excellent rate performance with 73.5 mAh g-1 at 1800 mA g-1, and retains 76% of initial value after 100 cycles, which are among the best reported values for PANI electrodes in battery applications.

2.
Anal Chim Acta ; 1298: 342403, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38462341

BACKGROUND: The construction of ratiometric fluorescent MOF sensors with integrated self-calibration and dual-channel detection can efficiently overcome the deficiencies of single-signal sensing. In this regard, the rational design of structurally functionalized MOFs is paramount for enhancing their performance in ratiometric fluorescent sensors. Lately, the concept of MOF-on-MOF design has garnered notable interest as a potential strategy for regulating the structural parameters of MOFs by integrating two or more distinct MOF types. Great efforts have been dedicated to exploring new MOF-on-MOF hybrids and developing their applications in diverse fields. Even so, these materials are still in the stage of advancement in the sensing field. RESULTS: Herein, a Zr-based metal-organic framework anchored on a rare-earth metal-organic framework (UiO-66(OH)2@Y-TCPP) was prepared for the ratiometric fluorescence detection toward Al (III) and pH. In this probe, the UiO-66(OH)2 featured hydroxyl active sites for Al (III), leading to a significant enhancement in fluorescence intensity upon the addition of Al (III), while the signal emitted by the red-emitting Y-TCPP, serving as the reference, remained constant. UiO-66(OH)2@Y-TCPP exhibited excellent selectivity for Al (III) sensing with a wider linear range of 0.1-1000 µM, and a lower detection limit of 0.06 µM. This probe has also been utilized for the quantitative determination of Al (III) in hydrotalcite chewable tablets with satisfactory results. In addition, the probe realized ratiometric pH sensing in the range of 7-13 using UiO-66(OH)2 as an interior reference. The paper-based probe strip was developed for visual pH sensing. By installing color recognition and processing software on a smartphone, real-time and convenient pH sensing could be achieved. SIGNIFICANCE: This is the first ratiometric fluorescent sensor for Al (III) and pH detection based on a MOF-on-MOF composite probe, which yields two different response modes. The detection results of Al (III) in hydrotalcite chewable tables and smartphone imaging for pH test paper demonstrate the practicability of the probe. This work opens up a new outlook on constructing a multi-functional application platform with substantial potential for employment in environmental and biological analysis tasks.

3.
Vaccines (Basel) ; 12(3)2024 Mar 13.
Article En | MEDLINE | ID: mdl-38543934

Vaccines are one of the most effective means of preventing influenza A, typically containing the hemagglutinin (HA) of the influenza A virus. However, antigenic drift and shift of the influenza A virus can lead to instability in vaccine efficacy. Compared to HA, the antigenic variation rate of neuraminidase (NA) is slower. In traditional inactivated influenza vaccines, although they contain a certain amount of NA, there are significant differences between different batches, which cannot consistently induce NA-based immune responses. Therefore, NA is often overlooked in vaccine development. In this study, we report an mRNA vaccine encoding the NA of two strains of influenza A virus. The experimental results demonstrated that when matched with the viral strain, this mRNA vaccine induced high levels of neutralizing antibodies, providing a protective effect to mice in viral challenge experiments, and this immune response was shown to be biased towards the Th1 type. In summary, this study demonstrates that NA is a promising potential antigen, providing new insights for the development of influenza A virus vaccines.

4.
Chemistry ; 30(22): e202304252, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38369896

Ta-doped Li7La3Zr2O12 (LLZTO) solid-state electrolytes (SEs) show great promise for solid-state batteries due to its high conductivity and safety. However, one of the challenges it faces is lithium dendrite propagation upon long-term cycling. To address this issue, we propose the incorporation of fumed silica (FS) at the grain boundaries of LLZTO to modify the properties of the garnet pellet, which effectively inhibits the dendrite growth. The introduction of FS has demonstrated several beneficial effects. Firstly, it reduces the migration barrier of lithium ions, which helps prevent dendrite formation and propagation. Additionally, FS reduces the electronic conductivity of the SEs pellet, suppressing the dendrite formation. Moreover, the formed lithium silicates from FS might also be acted as electron inhibitor, thus inhibiting the lithium dendrite growth upon cycling. By investigating the use of FS as a modifier in LLZTO-based electrolytes, our study contributes to advancing dendrite-free solid-state electrolytes and thus the development of high-performance all-solid-state batteries.

5.
J Colloid Interface Sci ; 660: 257-276, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38244494

The heterogeneity of hepatocellular carcinoma (HCC) and the complexity of the tumor microenvironment (TME) pose challenges to efficient drug delivery and the antitumor efficacy of combined or synergistic therapies. Herein, a metal-coordinated carrier-free nanodrug (named as USFe3+ LA NPs) was developed for ferroptosis-mediated multimodal synergistic anti-HCC. Natural product ursolic acid (UA) was incorporated to enhance the sensitivity of tumor cells to sorafenib (SRF). Surface decoration of cell penetration peptide and epithelial cell adhesion molecule aptamer facilitated the uptake of USFe3+ LA NPs by HepG2 cells. Meanwhile, Fe3+ ions could react with intracellular hydrogen peroxide, generating toxic hydroxyl radical (·OH) for chemodynamical therapy (CDT) and amplified ferroptosis by cystine/glutamate antiporter system (System Xc-), which promoted the consumption of glutathione (GSH) and inhibited the expression of glutathione peroxidase 4 (GPX4). Notably, these all-in-one nanodrugs could inhibit tumor metastasis and induced immunogenic cell death (ICD). Last but not least, the nanodrugs demonstrated favorable biocompatibility, augmenting the immune response against the programmed death-ligand 1 (PD-L1) by increasing cytotoxic T cell infiltration. In vivo studies revealed significant suppression of tumor growth and distant metastasis. Overall, our work introduced a novel strategy for applications of metal-coordinated co-assembled carrier-free nano-delivery system in HCC combination therapy, especially in the realms of cancer metastasis prevention and immunotherapy.


Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Pharmaceutical Preparations , Liver Neoplasms/drug therapy , Combined Modality Therapy , Cell Line, Tumor , Tumor Microenvironment
6.
Phys Chem Chem Phys ; 26(7): 6037-6048, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38295373

Porous carbons (PCs) have been widely investigated as electrode materials for supercapacitors. However, during the preparation process, intense pore formation reactions result in an amorphous carbon structure, which limits the rate performance of the electrode material. Herein, coal is chosen as a carbon source and making use of different reaction characteristics of vitrinite and inertinite with a KOH activator, an interconnected porous structure carbon material with an abundant graphite microcrystalline structure is obtained; the organic relationships between the ratio of vitrinite and inertinite, carbonization conditions, material structure and capacity performance were researched. At the ratio of vitrinite to inertinite of 1 : 2, the sample shows a specific surface area of 2507 m2 g-1 and its ID1/IG is 1.31, which is lower than that of raw coal (1.36). Due to the synergistic effect of the pore structure and graphite microcrystals, PC-900-40 exhibits an improved specific capacitance of 229.40 F g-1 at a current density of 1.0 A g-1, and even at a high current density of 10.0 A g-1 it delivers a specific capacitance of 170.04 F g-1. The PC-900-40//PC-900-40 symmetrical capacitor retains 96% of its initial capacitance after 20 000 cycles.

7.
Macromol Biosci ; 24(4): e2300420, 2024 Apr.
Article En | MEDLINE | ID: mdl-38088938

Improving the selective delivery and uptake efficiency of chemotherapeutic drugs remains a challenge for cancer-targeted therapy. In this work, a DNA tetrahedron is constructed as a targeted drug delivery system for efficient delivery of doxorubicin (Dox) into cancer cells. The DNA tetrahedron is composed of a tetrahedral DNA nanostructure (TDN) with two strands of AS1411 aptamer as recognition elements which can target the nucleolin protein on the cell membrane of cancer cells. The prepared DNA tetrahedron has a high drug-loading capacity and demonstrates pH-responsive Dox release properties. This enables efficient delivery of Dox into targeted cancer cells while reducing side effects on nontarget cells. The proposed drug delivery system exhibits significant therapeutic efficacy in vitro compared to free Dox. Accordingly, this work provides a good paradigm for developing a targeted drug delivery system for cancer therapy based on DNA tetrahedrons.


Aptamers, Nucleotide , Nanostructures , Neoplasms , Humans , Drug Carriers/chemistry , Drug Delivery Systems , DNA/chemistry , Nanostructures/chemistry , Doxorubicin , Neoplasms/drug therapy , Aptamers, Nucleotide/pharmacology , Aptamers, Nucleotide/chemistry , Cell Line, Tumor
8.
EClinicalMedicine ; 64: 102151, 2023 Oct.
Article En | MEDLINE | ID: mdl-37745024

Background: In a previous phase 3 clinical trial, we showed that an inactivated poliovirus vaccine derived from the Sabin strain (sIPV) can induce neutralising antibodies against currently circulating and reference wild poliovirus strains. However, the immune persistence of sIPV remains to be evaluated. Methods: In this study, 400 participants who were eligible for an early phase 3 clinical trial (Jan 1, 2012-Aug 31, 2014) in Pingle County, GuanXi Province, China, were initially involved in one site. Of the participants in the previous phase 3 clinical trial, sera of 287, 262, 237, and 207 participants were sampled at the ages of 4, 6, 8, and 10 years, respectively, after the prime-boost regimen. Neutralising antibodies against attenuated Sabin strains were detected using these serum samples to determine immune persistence. The serum neutralising antibodies titre of 1:8 against poliovirus types 1, 2, and 3 is considered to be a seroprotection level for polio. The trial is registered at ClinicalTrials.gov, NCT01510366. Findings: The protective rates against poliovirus types 1, 2, and 3 in the sIPV group were all 100% at 10 years after the booster immunisation, compared with 98.1%, 100%, and 97.1%, respectively, in the wIPV control group after 10 years. After the booster at 18 months, the geometric mean titres (GMTs) of neutralising antibodies against poliovirus types 1, 2, and 3 in the sIPV group were 13,265.6, 7856.7, and 6432.2, respectively, and the GMTs in the control group (inoculated with inactivated poliovirus vaccine derived from wild strain (wIPV)) were 3915.6, 2842.6, and 4982.7, respectively. With increasing time after booster immunisation, the GMTs of neutralising antibodies against poliovirus types 1, 2, and 3 gradually decreased in both the sIPV and wIPV groups. At the age of ten years, the GMTs of neutralising antibodies against poliovirus types 1, 2, and 3 in the sIPV group were 452.3, 392.8, and 347.5, respectively, and the GMTs in the wIPV group 108.5, 154.8, and 229.3, respectively, which were still at a higher-than-protective level (1:8). Interpretation: Both sIPV and wIPV maintained sufficiently high immune persistence against poliovirus types 1, 2, and 3 for at least 10 years after booster immunisation. Funding: Yunnan Provincial Science and Technology Department, the Bill and Melinda Gates Foundation, the National High-tech Research and Development Program, the National International Science and Technology Cooperation Project, the Yunnan Application Basic Research Project, the Innovation Team Project of Xie He, the Yunnan International Scientific and Technological Cooperation Project, and the Medical and Technology Innovation Project of Xie He.

9.
Asian J Pharm Sci ; 18(4): 100828, 2023 Jul.
Article En | MEDLINE | ID: mdl-37583709

Hepatocellular carcinoma (HCC) is now a common cause of cancer death, with no obvious change in patient survival over the past few years. Although the traditional therapeutic modalities for HCC patients mainly involved in surgery, chemotherapy, and radiotherapy, which have achieved admirable achievements, challenges are still existed, such as drug resistance and toxicity. The emerging gene therapy of clustered regularly interspaced short palindromic repeat/CRISPR-associated nuclease 9-based (CRISPR/Cas9), as an alternative to traditional treatment methods, has attracted considerable attention for eradicating resistant malignant tumors and regulating multiple crucial events of target gene-editing. Recently, advances in CRISPR/Cas9-based anti-drugs are presented at the intersection of science, such as chemistry, materials science, tumor biology, and genetics. In this review, the principle as well as statues of CRISPR/Cas9 technique were introduced first to show its feasibility. Additionally, the emphasis was placed on the applications of CRISPR/Cas9 technology in therapeutic HCC. Further, a broad overview of non-viral delivery systems for the CRISPR/Cas9-based anti-drugs in HCC treatment was summarized to delineate their design, action mechanisms, and anticancer applications. Finally, the limitations and prospects of current studies were also discussed, and we hope to provide comprehensively theoretical basis for the designing of anti-drugs.

10.
Chem Commun (Camb) ; 59(68): 10267-10270, 2023 Aug 22.
Article En | MEDLINE | ID: mdl-37534965

Herein, we for the first time report a reversible conversion between green-emissive [DMPZ]MnCl4 and red-emissive [DMPZ]4(MnCl6)(MnCl4)2·(H2O)2 (DMPZ = 1,4-dimethylpiperazine) using kinetic and thermodynamic controlling strategies. Significantly, the synchronous structural and emission transformations in single-component organic manganese halides with adjustable emission colors are highlighted.

11.
ACS Appl Mater Interfaces ; 15(29): 35684-35691, 2023 Jul 26.
Article En | MEDLINE | ID: mdl-37435971

Sandwiching polymer interlayers between the electrode and solid electrolyte is considered promising in solving the interfacial issues arising from solid-solid contact in garnet-based solid-state batteries, but drawbacks including low ionic conductivity, inferior Li+ transference number, and unsatisfying mechanical property of the polymer hindered the practical application of such strategy. To solve the mentioned shortcomings of the polymer interlayer simultaneously, we introduce the ferroelectric material, BaTi2O5 (BT) nanorods, into the polymer matrix in this work. By taking full advantage of the plasticization effect and intrinsic spontaneous polarization of the introduced ferroelectric, the polymer's ionic conductivity and Li+ transference number have been significantly enhanced. The built-in electric field BT introduced also benefits the modulation of CEI components formed on the cathode particles, further enhancing the battery performance by decreasing cathode degradation. Besides, the BT nanorods' particular high aspect ratio also helps increase the mechanical property of the obtained polymer film, making it more resistant to lithium dendrite growth across the interface. Benefitting from the merits mentioned above, the assembled lithium symmetric cells using garnet SE with the BT-modified polymer interlayer exhibit stable cycling performance (no short circuit after 1000 h under RT) with low polarization voltage. The full battery employing LiFePO4 as a cathode also presents superior capacity retentions (94.6% after 200 cycles at 0.1 C and 93.4% after 400 cycles at 0.2 C). This work highlights the importance of ferroelectric materials with specific morphology in enhancing the electrochemical performance of polymer-based electrolytes, promoting the practical application of solid-state batteries.

12.
Foods ; 12(13)2023 Jun 29.
Article En | MEDLINE | ID: mdl-37444292

The flat peach is a high economic value table fruit possessing excellent quality and a unique aroma. This article investigated the quality characteristics and aroma fingerprinting of flat peaches (Qingpan, QP; Ruipan 2, R2; Ruipan 4, R4; Wanpan, WP) from Xinjiang in terms of taste, antioxidant capacity, and volatile aroma compounds using high-performance liquid chromatography (HPLC) and HS-SPME-GC-MS. The results showed that the flat peaches had a good taste and high antioxidant capacity, mainly due to the high sugar-low acid property and high levels of phenolic compounds. This study found that sucrose (63.86~73.86%) was the main sugar, and malic acid (5.93~14.96%) and quinic acid (5.25~15.01%) were the main organic acids. Furthermore, chlorogenic acid (main phenolic compound), epicatechin, rutin, catechin, proanthocyanidin B1, and neochlorogenic acid were positively related to the antioxidant activity of flat peaches. All flat peaches had similar aroma characteristics and were rich in aromatic content. Aldehydes (especially benzaldehyde and 2-hexenal) and esters were the main volatile compounds. The aroma fingerprinting of flat peaches consisted of hexanal, 2-hexenal, nonanal, decanal, benzaldehyde, 2,4-decadienal, dihydro-ß-ionone, 6-pentylpyran-2-one, 2-hexenyl acetate, ethyl caprylate, γ-decalactone, and theaspirane, with a "peach-like", "fruit", and "coconut-like" aroma. Among them, 2,4-decadienal, 2-hexenyl acetate, and theaspirane were the characteristic aroma compounds of flat peaches. The results provide a theoretical basis for the industrial application of the special aroma of flat peaches.

13.
Adv Mater ; 35(25): e2210055, 2023 Jun.
Article En | MEDLINE | ID: mdl-36637812

Aqueous zinc-ion batteries (ZIBs) are promising energy storage solutions with low cost and superior safety, but they suffer from chemical and electrochemical degradations closely related to the electrolyte. Here, a new zinc salt design and a drop-in solution for long cycle-life aqueous ZIBs are reported. The salt Zn(BBI)2 with a rationally designed anion group, N-(benzenesulfonyl)benzenesulfonamide (BBI- ), has a special amphiphilic molecular structure, which combines the benefits of hydrophilic and hydrophobic groups to properly tune the solubility and interfacial condition. This new zinc salt does not contain fluorine and is synthesized via a high-yield and low-cost method. It is shown that 1 m Zn(BBI)2 aqueous electrolyte with a widened cathodic stability window effectively stabilizes Zn metal/H2 O interface, mitigates chemical and electrochemical degradations, and enables both symmetric and full cells using a zinc-metal electrode.

14.
ACS Appl Mater Interfaces ; 14(51): 56808-56816, 2022 Dec 28.
Article En | MEDLINE | ID: mdl-36516879

Organic electrode materials face two outstanding issues in the practical applications in lithium-ion batteries (LIBs), dissolution and poor electronic conductivity. Herein, we fabricate a nanocomposite of an anthraquinone carboxylate lithium salt (LiAQC) and graphene to address the two issues. LiAQC is synthesized via a green and facile one-pot reaction and then ball-milled with graphene to obtain a nanocomposite (nr-LiAQC/G). For comparison, single LiAQC is also ball-milled to form a nanorod (nr-LiAQC). Together with pristine LiAQC, the three samples are used as cathodes for LIBs. Results show that good cycling performance can be obtained by introducing the -CO2Li hydrophilic group on anthraquinone. Furthermore, the nr-LiAQC/G demonstrates not only a high initial discharge capacity of 187 mAh g-1 at 0.1 C but also good cycling stability (reversible capacity: ∼165 mAh g-1 at 0.1 C after 200 cycles) and good rate capability (the average discharge capacity of 149 mAh g-1 at 2 C). The superior electrochemical properties of the nr-LiAQC/G profit from graphene with high electronic conductivity, the nanorod structure of LiAQC shortening the transport distance for lithium ions and electrons, and the introduction of the -CO2Li hydrophilic group decreasing the dissolution of LiAQC in the electrolyte. Meanwhile, density functional theory calculations support the roles of graphene and -CO2Li groups. The fabrication is general and facile, ready to be extended to other organic electrode materials.

15.
Front Oncol ; 12: 1034519, 2022.
Article En | MEDLINE | ID: mdl-36387156

Objective: To develop a radiomics nomogram for predicting microvascular invasion (MVI) before surgery in hepatocellular carcinoma (HCC) patients. Materials and Methods: The data from a total of 189 HCC patients (training cohort: n = 141; validation cohort: n = 48) were collected, involving the clinical data and imaging characteristics. Radiomics features of all patients were extracted from hepatobiliary phase (HBP) in 15 min. Least absolute shrinkage selection operator (LASSO) regression and logistic regression were utilized to reduce data dimensions, feature selection, and to construct a radiomics signature. Clinicoradiological factors were identified according to the univariate and multivariate analyses, which were incorporated into the final predicted nomogram. A nomogram was developed to predict MVI of HCC by combining radiomics signatures and clinicoradiological factors. Radiomics nomograms were evaluated for their discrimination capability, calibration, and clinical usefulness. Results: In the clinicoradiological factors, gender, alpha-fetoprotein (AFP) level, tumor shape and halo sign served as the independent risk factors of MVI, with which the area under the curve (AUC) is 0.802. Radiomics signatures covering 14 features at HBP 15 min can effectively predict MVI in HCC, to construct radiomics signature model, with the AUC of 0.732. In the final nomogram model the clinicoradiological factors and radiomics signatures were integrated, outperforming the clinicoradiological model (AUC 0.884 vs. 0.802; p <0.001) and radiomics signatures model (AUC 0.884 vs. 0.732; p < 0.001) according to Delong test results. A robust calibration and discrimination were demonstrated in the nomogram model. The results of decision curve analysis (DCA) showed more significantly clinical efficiency of the nomogram model in comparison to the clinicoradiological model and the radiomic signature model. Conclusions: Depending on the clinicoradiological factors and radiological features on HBP 15 min images, nomograms can effectively predict MVI status in HCC patients.

16.
Foods ; 11(19)2022 Sep 20.
Article En | MEDLINE | ID: mdl-36230020

Peaches are tasty and juicy, with a unique flavor. The flavors of peaches always vary with cultivars. To investigate the physicochemical and aroma characteristics of peaches, the sugars, organic acids, total flavonoids, phenols, antioxidant activities, and aroma compounds of seven peach cultivars in Xinjiang were determined using high-performance liquid chromatography (HPLC) and headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS). The results showed that sucrose (59.83 to 87.34%), malic acid (32.41 to 59.14%), and chlorogenic acid (10.43 to 45.50%) were the dominant sugar, organic acid, and phenolic compound in peaches, respectively. The antioxidant activity varied between 147.81 and 394.55 µmol TEs/100 g. The analysis of the aroma structure of peaches found that the volatile composition of peaches was relatively consistent, though the concentration of total aroma and certain separate compounds were different between cultivars. Meanwhile, the aroma fingerprint of the peaches consisted of hexyl acetate, cis-3-hexenyl acetate, γ-decalactone, n-hexanal, 2-hexenal, nonanal, decanal benzaldehyde and 6-pentylpyran-2-one, providing a clear green, sweet, floral, and fruity odor. These results provide complete information on the physicochemical properties, functional ingredients and aroma of the peaches.

17.
Diagnostics (Basel) ; 12(10)2022 Sep 23.
Article En | MEDLINE | ID: mdl-36291988

Doctors' diagnosis preferences are different, which makes them adopt different assumptions in medical decision making. Taking the diagnosis of thyroid nodules as an example, this study compares three assumptions, namely deletion, imputation based on the distribution (distribution), and benign by default (benign). For deletion, which is the most used assumption, the clinical reports with missing features would be deleted. For distribution, the missing features would be replaced with a distribution of features with respective probabilities. Besides the two assumptions, certain doctors have also stated that they leave benign features unrecorded because they think that such benign features are irrelevant to the final diagnosis. Under the benign assumption, the missing features would be replaced with benign features. The three assumptions are tested comparatively. Moreover, the belief rule base (BRB) is used to construct the diagnostic model under the three assumptions since it is essentially a white-box approach that can provide good interpretability and direct access to doctors and patients. A total of 3766 clinical reports on thyroid nodule diagnosis were collected from ten radiologists over a seven-year period. Case study results validate that the benign by default assumption has produced the optimal results, although different doctors could present varied tendencies towards different assumptions. Guidance and suggestions for doctors' practical work have been made based on the study results to improve work efficiency and diagnostic accuracy.

18.
Front Microbiol ; 13: 919047, 2022.
Article En | MEDLINE | ID: mdl-35847119

Flat peaches possess characteristic flavors and are rich in nutrients. The fermentation of flat peaches to produce wine through complex biochemical reactions is an effective method to overcome their seasonal defects. Spontaneously fermented flat peach wine has plentiful and strong flavors, but the microbiota of fermentation are still unknown. In this study, the microbial succession and volatile compound dynamics of spontaneous fermentation in Xinjiang flat peach wine were investigated using high-throughput sequencing (HTS) and headspace solid phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) technology, respectively, to better understand the microbiota involved. Multivariate data analysis was used to predict the relationship between microorganisms and volatile chemicals. The results showed that Kazachstania, Pichia, Aspergillus, Fructobacillus, Leuconostoc, and Lactobacillus were the dominant genera during the spontaneous fermentation of flat peach wine. Furthermore, ethyl hexanoate, 3-hexen-1-yl acetate, ethyl caprate, ethyl caprylate, phenethyl acetate, ethanol, γ-decalactone, decanal, 1-hexanoic acid, and octanoic acid endued flat peach wine with a strong fruity and fatty aroma. The core functional microbiota (primarily consisting of 11 bacterial and 14 fungal taxa) was strongly associated with the production of 27 volatile compounds in the spontaneously fermented flat peach wine, according to multivariate data analysis. Some alcohols and esters were positively linked with the presence of Kazachstania and Pichia. Meanwhile, the presence of Fructobacillus, Leuconostoc, Lactobacillus, and Weissella was significantly correlated with 2-non-anol, ethanol, 3-methyl-1-butanol, octyl formate, isoamyl lactate, and ethyl lactate. This snapshot of microbial succession and volatile compound dynamics provides insights into the microorganisms involved in flat peach wine fermentation and could guide the production of flat peach wine with desirable characteristics.

19.
Chem Commun (Camb) ; 58(49): 6962-6965, 2022 Jun 16.
Article En | MEDLINE | ID: mdl-35642930

Herein, nanosized fumed silica (FS) with poor electrical conductivity is used as an "electron inhibitor" between Li metal and garnet solid electrolyte (SE) to prevent lithium dendrite growth. The FS demonstrated its effectiveness in preventing the fast lithium dendrite propagation during the long-term lithium stripping and plating processes, leading to an enhanced battery performance. We believe this study could help shed light on such electron inhibitors in constructing all-solid-state batteries (ASSBs) with superior cycling performance.

20.
Nat Commun ; 13(1): 3252, 2022 Jun 06.
Article En | MEDLINE | ID: mdl-35668132

Aqueous zinc batteries are appealing devices for cost-effective and environmentally sustainable energy storage. However, the zinc metal deposition at the anode strongly influences the battery cycle life and performance. To circumvent this issue, here we propose the use of lanthanum nitrate (La(NO3)3) as supporting salt for aqueous zinc sulfate (ZnSO4) electrolyte solutions. Via physicochemical and electrochemical characterizations, we demonstrate that this peculiar electrolyte formulation weakens the electric double layer repulsive force, thus, favouring dense metallic zinc deposits and regulating the charge distribution at the zinc metal|electrolyte interface. When tested in Zn||VS2 full coin cell configuration (with cathode mass loading of 16 mg cm-2), the electrolyte solution containing the lanthanum ions enables almost 1000 cycles at 1 A g-1 (after 5 activation cycles at 0.05 A g-1) with a stable discharge capacity of about 90 mAh g-1 and an average cell discharge voltage of ∼0.54 V.

...