Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Curr Gene Ther ; 24(5): 347-355, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005061

RESUMEN

Hepatocyte growth factor (HGF) is expressed in multiple systems and mediates a variety of biological activities, such as mitosis, motility, and morphogenesis. A growing number of studies have revealed the expression patterns and functions of HGF in ovarian and testicular physiology from the prenatal to the adult stage. HGF regulates folliculogenesis and steroidogenesis by modulating the functions of theca cells and granulosa cells in the ovary. It also mediates somatic cell proliferation and steroidogenesis, thereby affecting spermatogenesis in males. In addition to its physiological effects on the reproductive system, HGF has shown advantages in preclinical studies over recent years for the treatment of male and female infertility, particularly in women with premature ovarian insufficiency. This review aims to summarize the pleiotropic functions of HGF in the reproductive system and to provide prospects for its clinical application.


Asunto(s)
Factor de Crecimiento de Hepatocito , Humanos , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/metabolismo , Femenino , Masculino , Reproducción/genética , Animales , Ovario/metabolismo , Espermatogénesis , Testículo/metabolismo , Células de la Granulosa/metabolismo
2.
EMBO J ; 43(14): 3044-3071, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38858601

RESUMEN

MCM8 has emerged as a core gene in reproductive aging and is crucial for meiotic homologous recombination repair. It also safeguards genome stability by coordinating the replication stress response during mitosis, but its function in mitotic germ cells remains elusive. Here we found that disabling MCM8 in mice resulted in proliferation defects of primordial germ cells (PGCs) and ultimately impaired fertility. We further demonstrated that MCM8 interacted with two known helicases DDX5 and DHX9, and loss of MCM8 led to R-loop accumulation by reducing the retention of these helicases at R-loops, thus inducing genome instability. Cells expressing premature ovarian insufficiency-causative mutants of MCM8 with decreased interaction with DDX5 displayed increased R-loop levels. These results show MCM8 interacts with R-loop-resolving factors to prevent R-loop-induced DNA damage, which may contribute to the maintenance of genome integrity of PGCs and reproductive reserve establishment. Our findings thus reveal an essential role for MCM8 in PGC development and improve our understanding of reproductive aging caused by genome instability in mitotic germ cells.


Asunto(s)
ARN Helicasas DEAD-box , Inestabilidad Genómica , Proteínas de Mantenimiento de Minicromosoma , Estructuras R-Loop , Animales , Femenino , Humanos , Masculino , Ratones , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Daño del ADN , Células Germinativas/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Mantenimiento de Minicromosoma/genética , Estructuras R-Loop/genética
3.
Hum Genet ; 143(3): 357-369, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38483614

RESUMEN

Premature ovarian insufficiency (POI) is a common reproductive aging disorder due to a dramatic decline of ovarian function before 40 years of age. Accumulating evidence reveals that genetic defects, particularly those related to DNA damage response, are a crucial contributing factor to POI. We have demonstrated that the functional Fanconi anemia (FA) pathway maintains the rapid proliferation of primordial germ cells to establish a sufficient reproductive reserve by counteracting replication stress, but the clinical implications of this function in human ovarian function remain to be established. Here, we screened the FANCI gene, which encodes a key component for FA pathway activation, in our whole-exome sequencing database of 1030 patients with idiopathic POI, and identified two pairs of novel compound heterozygous variants, c.[97C > T];[1865C > T] and c.[158-2A > G];[c.959A > G], in two POI patients, respectively. The missense variants did not alter FANCI protein expression and nuclear localization, apart from the variant c.158-2A > G causing abnormal splicing and leading to a truncated mutant p.(S54Pfs*5). Furthermore, the four variants all diminished FANCD2 ubiquitination levels and increased DNA damage under replication stress, suggesting that the FANCI variants impaired FA pathway activation and replication stress response. This study first links replication stress response defects with the pathogenesis of human POI, providing a new insight into the essential roles of the FA genes in ovarian function.


Asunto(s)
Proteínas del Grupo de Complementación de la Anemia de Fanconi , Heterocigoto , Insuficiencia Ovárica Primaria , Humanos , Insuficiencia Ovárica Primaria/genética , Femenino , Adulto , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Secuenciación del Exoma , Daño del ADN , Anemia de Fanconi/genética , Mutación Missense
4.
Cell Rep ; 42(12): 113531, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38060382

RESUMEN

Oocyte maturation is vital to attain full competence required for fertilization and embryogenesis. NLRP14 is preferentially expressed in mammalian oocytes and early embryos. Yet, the role and molecular mechanism of NLRP14 in oocyte maturation and early embryogenesis are poorly understood, and whether NLRP14 deficiency accounts for human infertility is unknown. Here, we found that maternal loss of Nlrp14 resulted in sterility with oocyte maturation defects and early embryonic arrest (EEA). Nlrp14 ablation compromised oocyte competence due to impaired cytoplasmic and nuclear maturation. Importantly, we revealed that NLRP14 maintained cytoplasmic UHRF1 abundance by protecting it from proteasome-dependent degradation and anchoring it from nuclear translocation in the oocyte. Furthermore, we identified compound heterozygous NLRP14 variants in women affected by infertility with EEA, which interrupted the NLRP14-UHRF1 interaction and decreased UHRF1 levels. Our data demonstrate NLRP14 as a cytoplasm-specific regulator of UHRF1 during oocyte maturation, providing insights into genetic diagnosis for female infertility.


Asunto(s)
Infertilidad Femenina , Animales , Femenino , Humanos , Infertilidad Femenina/genética , Infertilidad Femenina/metabolismo , Oocitos/metabolismo , Oogénesis , Citoplasma , Desarrollo Embrionario/genética , Mamíferos , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Nucleósido-Trifosfatasa/metabolismo
5.
Hum Reprod ; 38(Supplement_2): ii47-ii56, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37982418

RESUMEN

STUDY QUESTION: Are variants of genes involved in meiosis initiation responsible for premature ovarian insufficiency (POI)? SUMMARY ANSWER: A MEIOSIN variant participates in the pathogenesis of human POI by impairing meiosis due to insufficient transcriptional activation of essential meiotic genes. WHAT IS KNOWN ALREADY: Meiosis is the key event for the establishment of the ovarian reserve, and several gene defects impairing meiotic homologous recombination have been found to contribute to the pathogenesis of POI. Although STRA8 and MEIOISN variants have been found to associate with POI in a recent study, the condition of other meiosis initiation genes is unknown and direct evidence of variants participating in the pathogenesis of POI is still lacking. STUDY DESIGN, SIZE, DURATION: This was a retrospective genetic study. An in-house whole exome sequencing (WES) database of 1030 idiopathic POI patients was screened for variations of meiosis initiation genes. PARTICIPANTS/MATERIALS, SETTING, METHODS: Homozygous or compound heterozygous variations of genes involved in meiosis initiation were screened in the in-house WES database. The pathogenicity of the variation was verified by in vitro experiments, including protein structure prediction and dual-luciferase reporter assay. The effect of the variant on ovarian function and meiosis was demonstrated through histological analyses in a point mutation mouse model. MAIN RESULTS AND THE ROLE OF CHANCE: One homozygous variant in MEIOSIN (c.1735C>T, p.R579W) and one in STRA8 (c.258 + 1G>A), which initiates meiosis via the retinoic acid-dependent pathway, were identified in a patient with idiopathic POI respectively. The STRA8 variation has been reported in the recently published work. For the MEIOSIN variation, the dual-luciferase reporter assay revealed that the variant adversely affected the transcriptional function of MEIOSIN in upregulating meiotic genes. Furthermore, knock-in mice with the homologous mutation confirmed that the variation impacted the meiotic prophase I program and accelerated oocyte depletion. Moreover, the variant p.R579W localizing in the high-mobility group (HMG) box domain disrupted the nuclear localization of the MEIOSIN protein but was dispensable for the cell-cycle switch of oocytes, suggesting a unique role of the MEIOSIN HMG box domain in meiosis initiation. LIMITATIONS, REASONS FOR CAUTION: Further studies are needed to explore the role of other meiosis initiation genes in the pathogenesis of POI. WIDER IMPLICATIONS OF THE FINDINGS: The MEIOSIN variant was verified to cause POI by impaired transcriptional regulation of meiotic genes and was inherited by a recessive mode. The function of HMG box domain in MEIOSIN protein was also expanded by this study. Although causative variations in meiotic initiation genes are rare in POI, our study confirmed the pathogenicity of a MEIOSIN variant and elucidated another mechanism of human infertility. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the National Key Research & Developmental Program of China (2022YFC2703800, 2022YFC2703000), National Natural Science Foundation for Distinguished Young Scholars (82125014), National Natural Science Foundation of China (32070847, 32170867, 82071609), Basic Science Center Program of NSFC (31988101), Natural Science Foundation of Shandong Province for Grand Basic Projects (ZR2021ZD33), Natural Science Foundation of Shandong Province for Excellent Young Scholars (ZR2022YQ69), Taishan Scholars Program for Young Experts of Shandong Province (tsqn202211371), and Qilu Young Scholars Program of Shandong University. The authors declare no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Menopausia Prematura , Insuficiencia Ovárica Primaria , Humanos , Animales , Ratones , Femenino , Meiosis/genética , Estudios Retrospectivos , Insuficiencia Ovárica Primaria/genética , Luciferasas
6.
BMC Biol ; 21(1): 174, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37580696

RESUMEN

BACKGROUND: The maintenance of genome stability in primordial germ cells (PGCs) is crucial for the faithful transmission of genetic information and the establishment of reproductive reserve. Numerous studies in recent decades have linked the Fanconi anemia (FA) pathway with fertility, particularly PGC development. However, the role of FAAP100, an essential component of the FA core complex, in germ cell development is unexplored. RESULTS: We find that FAAP100 plays an essential role in R-loop resolution and replication fork protection to counteract transcription-replication conflicts (TRCs) during mouse PGC proliferation. FAAP100 deletion leads to FA pathway inactivation, increases TRCs as well as cotranscriptional R-loops, and contributes to the collapse of replication forks and the generation of DNA damage. Then, the activated p53 signaling pathway triggers PGC proliferation defects, ultimately resulting in insufficient establishment of reproductive reserve in both sexes of mice. CONCLUSIONS: Our findings suggest that FAAP100 is required for the resolution of TRCs in PGCs to safeguard their genome stability.


Asunto(s)
Núcleo Celular , Proteínas de Unión al ADN , Células Germinativas , Animales , Femenino , Masculino , Ratones , Diferenciación Celular , Fertilidad , Reproducción
7.
J Clin Invest ; 133(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36856110

RESUMEN

The transcription factor p63 guards genome integrity in the female germline, and its mutations have been reported in patients with premature ovarian insufficiency (POI). However, the precise contribution of the TP63 gene to the pathogenesis of POI needs to be further determined. Here, in 1,030 Chinese patients with POI, we identified 6 heterozygous mutations of the TP63 gene that impaired the C-terminal transactivation-inhibitory domain (TID) of the TAp63α protein and resulted in tetramer formation and constitutive activation of the mutant proteins. The mutant proteins induced cell apoptosis by increasing the expression of apoptosis-inducing factors in vitro. We next introduced a premature stop codon and selectively deleted the TID of TAp63α in mice and observed rapid depletion of the p63+/ΔTID mouse oocytes through apoptosis after birth. Finally, to further verify the pathogenicity of the mutation p.R647C in the TID that was present in 3 patients, we generated p63+/R647C mice and also found accelerated oocyte loss, but to a lesser degree than in the p63+/ΔTID mice. Together, these findings show that TID-related variants causing constitutive activation of TAp63α lead to POI by inducing oocyte apoptosis, which will facilitate the genetic diagnosis of POI in patients and provide a potential therapeutic target for extending female fertility.


Asunto(s)
Mutación con Ganancia de Función , Oocitos , Animales , Ratones , Apoptosis/genética , Proteínas Mutantes , Mutación , Factores de Transcripción/genética , Humanos
8.
Cell Mol Life Sci ; 80(4): 92, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36928776

RESUMEN

The proper development of primordial germ cells (PGCs) is an essential prerequisite for gametogenesis and mammalian fertility. The Fanconi anemia (FA) pathway functions in maintaining the development of PGCs. FANCT/UBE2T serves as an E2 ubiquitin-conjugating enzyme that ubiquitylates the FANCD2-FANCI complex to activate the FA pathway, but its role in the development of PGCs is not clear. In this study, we found that Ube2t knockout mice showed defects in PGC proliferation, leading to severe loss of germ cells after birth. Deletion of UBE2T exacerbated DNA damage and triggered the activation of the p53 pathway. We further demonstrated that UBE2T counteracted transcription-replication conflicts by resolving R-loops and stabilizing replication forks, and also protected common fragile sites by resolving R-loops in large genes and promoting mitotic DNA synthesis to maintain the genome stability of PGCs. Overall, these results provide new insights into the function and regulatory mechanisms of the FA pathway ensuring normal development of PGCs.


Asunto(s)
Replicación del ADN , Células Germinativas , Transcripción Genética , Enzimas Ubiquitina-Conjugadoras , Animales , Ratones , Daño del ADN/genética , Replicación del ADN/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Células Germinativas/metabolismo , Mamíferos/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación , Transcripción Genética/genética
9.
Nat Med ; 29(2): 483-492, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732629

RESUMEN

Premature ovarian insufficiency (POI) is a major cause of female infertility due to early loss of ovarian function. POI is a heterogeneous condition, and its molecular etiology is unclear. To identify genetic variants associated with POI, here we performed whole-exome sequencing in a cohort of 1,030 patients with POI. We detected 195 pathogenic/likely pathogenic variants in 59 known POI-causative genes, accounting for 193 (18.7%) cases. Association analyses comparing the POI cohort with a control cohort of 5,000 individuals without POI identified 20 further POI-associated genes with a significantly higher burden of loss-of-function variants. Functional annotations of these novel 20 genes indicated their involvement in ovarian development and function, including gonadogenesis (LGR4 and PRDM1), meiosis (CPEB1, KASH5, MCMDC2, MEIOSIN, NUP43, RFWD3, SHOC1, SLX4 and STRA8) and folliculogenesis and ovulation (ALOX12, BMP6, H1-8, HMMR, HSD17B1, MST1R, PPM1B, ZAR1 and ZP3). Cumulatively, pathogenic and likely pathogenic variants in known POI-causative and novel POI-associated genes contributed to 242 (23.5%) cases. Further genotype-phenotype correlation analyses indicated that genetic contribution was higher in cases with primary amenorrhea compared to that in cases with secondary amenorrhea. This study expands understanding of the genetic landscape underlying POI and presents insights that have the potential to improve the utility of diagnostic genetic screenings.


Asunto(s)
Amenorrea , Insuficiencia Ovárica Primaria , Humanos , Femenino , Amenorrea/genética , Insuficiencia Ovárica Primaria/genética , Mutación , Pruebas Genéticas , Estudios de Asociación Genética , Ubiquitina-Proteína Ligasas/genética
10.
J Ovarian Res ; 16(1): 39, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36793102

RESUMEN

BACKGROUND: Premature ovarian insufficiency refers to the loss of ovarian function before 40 years of age. The etiology is heterogeneous, and genetic factors account for 20-25% of cases. However, how to transform genetic findings to clinical molecular diagnose remains a challenge. To identify potential causative variations for POI, a next generation sequencing panel with 28 known causative genes of POI was designed, and a large cohort of 500 Chinese Han patients was screened directly. Pathogenic evaluation of the identified variants and the phenotype analysis were performed according to monogenic or oligogenic variants. RESULTS: A total of 14.4% (72/500) of the patients carried 61 pathogenic or likely pathogenic variants in 19 of the genes in the panel. Interestingly, 58 variants (95.1%, 58/61) were firstly identified in patients with POI. FOXL2 harbored the highest occurrence frequency (3.2%, 16/500), among whom presented with isolated ovarian insufficiency instead of blepharophimosis-ptosis-epicanthus inversus syndrome. Moreover, luciferase reporter assay confirmed variant p.R349G, which account for 2.6% of POI cases, impaired the transcriptional repressive effect of FOXL2 on CYP17A1. The novel compound heterozygous variants in NOBOX and MSH4 were confirmed by pedigree haplotype analysis, and digenic heterozygous variants in MSH4 and MSH5 were firstly identified. Furthermore, nine patients (1.8%, 9/500) with digenic or multigenic pathogenic variants presented with delayed menarche, early onset of POI and high prevalence of primary amenorrhea compared with those with monogenic variation(s). CONCLUSIONS: The genetic architecture of POI has been enriched through the targeted gene panel in a large cohort of patients with POI. Specific variants in pleiotropic genes may result in isolated POI rather than syndromic POI, whereas oligogenic defects might have cumulative deleterious effects on the severity of POI phenotype.


Asunto(s)
Menopausia Prematura , Enfermedades del Ovario , Insuficiencia Ovárica Primaria , Humanos , Femenino , Insuficiencia Ovárica Primaria/genética , Insuficiencia Ovárica Primaria/patología , Fenotipo , Secuenciación de Nucleótidos de Alto Rendimiento
11.
J Biol Chem ; 299(3): 102905, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36642183

RESUMEN

When DNA interstrand crosslink lesions occur, a core complex of Fanconi anemia proteins promotes the ubiquitination of FANCD2 and FANCI, which recruit downstream factors to repair the lesion. However, FANCD2 maintains genome stability not only through its ubiquitination-dependent but also its ubiquitination-independent functions in various DNA damage response pathways. Increasing evidence suggests that FANCD2 is essential for fertility, but its ubiquitination-dependent and ubiquitination-independent roles during germ cell development are not well characterized. In this study, we analyzed germ cell development in Fancd2 KO and ubiquitination-deficient mutant (Fancd2K559R/K559R) mice. We showed that in the embryonic stage, both the ubiquitination-dependent and ubiquitination-independent functions of FANCD2 were required for the expansion of primordial germ cells and establishment of the reproductive reserve by reducing transcription-replication conflicts and thus maintaining genome stability in primordial germ cells. Furthermore, we found that during meiosis in spermatogenesis, FANCD2 promoted chromosome synapsis and regulated crossover formation independently of its ubiquitination, but that both ubiquitinated and nonubiquitinated FANCD2 functioned in programmed double strand break repair. Finally, we revealed that on meiotic XY chromosomes, H3K4me2 accumulation required ubiquitination-independent functionality of FANCD2, while the regulation of H3K9me2 and H3K9me3 depended on FANCD2 ubiquitination. Taken together, our findings suggest that FANCD2 has distinct functions that are both dependent on and independent of its ubiquitination during germ cell development.


Asunto(s)
Proteína del Grupo de Complementación D2 de la Anemia de Fanconi , Espermatogénesis , Animales , Ratones , Ciclo Celular , Daño del ADN , Reparación del ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Inestabilidad Genómica , Ubiquitinación
12.
Proc Natl Acad Sci U S A ; 119(34): e2203208119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969748

RESUMEN

Preserving a high degree of genome integrity and stability in germ cells is of utmost importance for reproduction and species propagation. However, the regulatory mechanisms of maintaining genome stability in the developing primordial germ cells (PGCs), in which rapid proliferation is coupled with global hypertranscription, remain largely unknown. Here, we find that mouse PGCs encounter a constitutively high frequency of transcription-replication conflicts (TRCs), which lead to R-loop accumulation and impose endogenous replication stress on PGCs. We further demonstrate that the Fanconi anemia (FA) pathway is activated by TRCs and has a central role in the coordination between replication and transcription in the rapidly proliferating PGCs, as disabling the FA pathway leads to TRC and R-loop accumulation, replication fork destabilization, increased DNA damage, dramatic loss of mitotically dividing mouse PGCs, and consequent sterility of both sexes. Overall, our findings uncover the unique source and resolving mechanism of endogenous replication stress during PGC proliferation, provide a biological explanation for reproductive defects in individuals with FA, and improve our understanding of the monitoring strategies for genome stability during germ cell development.


Asunto(s)
Anemia de Fanconi , Animales , Daño del ADN , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Femenino , Inestabilidad Genómica , Células Germinativas/metabolismo , Masculino , Ratones , Estructuras R-Loop
13.
Stem Cell Res Ther ; 13(1): 49, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35109928

RESUMEN

BACKGROUND: Declining ovarian function in advance-aged women and in premature ovarian insufficiency (POI) patients seriously affects quality of life, and there is currently no effective treatment to rescue ovarian function in clinic. Stem cell transplantation is a promising therapeutic strategy for ovarian aging, but its clinical application is limited due to the low efficiency and unclear mechanism. Here, a novel combination of umbilical cord-mesenchymal stem cells (UC-MSCs) and autocrosslinked hyaluronic acid (HA) gel is explored to rescue ovarian reserve and fecundity in POI and naturally aging mice. METHODS: To investigate HA prolonged the survival after UC-MSCs transplantation, PCR and immunofluorescence were performed to track the cells on day 1, 3, 7 and 14 after transplantation. The effects of HA on UC-MSCs were analyzed by CCK8 assay, RNA-sequencing and 440 cytokine array. In vivo experiments were conducted to evaluate the therapeutic effects of UC-MSCs combined with HA transplantation in 4-vinylcyclohexene diepoxide (VCD)-induced POI mice and naturally aging mice model. Ovarian function was analyzed by ovarian morphology, follicle counts, estrous cycle, hormone levels and fertility ability. To investigate the mechanisms of stem cell therapy, conditioned medium was collected from UC-MSCs and fibroblast. Both in vitro ovarian culture model and 440 cytokine array were applied to assess the paracrine effect and determine the underlying mechanism. Hepatocyte growth factor (HGF) was identified as an effective factor and verified by HGF cytokine/neutralization antibody supplementation into ovarian culture system. RESULTS: HA not only prolongs the retention of UC-MSCs in the ovary, but also boosts their secretory function, and UC-MSCs promote follicular survival by activating the PI3K-AKT pathway through a paracrine mechanism both in vitro and in vivo. More importantly, HGF is identified as the key functional cytokine secreted by MSCs. CONCLUSIONS: The results show that HA is an excellent cell scaffold to improve the treatment efficiency of UC-MSCs for ovarian aging under both physiological and pathological conditions, and the therapeutic mechanism is through activation of the PI3K-AKT pathway via HGF. These findings will facilitate the clinical application of MSCs transplantation for ovarian disorders.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Anciano , Animales , Femenino , Humanos , Ácido Hialurónico/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Calidad de Vida
14.
Autophagy ; 18(8): 1864-1878, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35025698

RESUMEN

Ovarian granulosa cells (GCs) proliferate and differentiate along with follicular growth, and this is indispensable for oocyte development and female fertility. Although the role of macroautophagy/autophagy in ovarian function has been reported, its contribution to the regulation of GC characteristics remains elusive. The siRNA-mediated knockdown of two key autophagy-related genes ATG5 and BECN1 and the autophagy inhibitor chloroquine were used to interfere with autophagy in GCs. Inhibition of autophagy both genetically and pharmacologically resulted in decreased expression of genes associated with GC differentiation, including CYP19A1/Aromatase and FSHR, as well as in reduced estradiol synthesis. Mechanistically, when autophagy was disrupted, the transcription factor WT1 accumulated in GCs due to its insufficient degradation by the autophagic pathway, and this inhibited GC differentiation. Finally, decreased expression of several autophagy-related genes, as well as reduced LC3-II:LC3-I and elevated SQSTM1/p62 protein levels, which are indications of decreased autophagy, were detected in GCs from biochemical premature ovarian insufficiency patients. In summary, our study reveals that autophagy regulates the differentiation of ovarian GCs by degrading WT1 and that insufficient autophagy might be involved in ovarian dysfunction.Abbreviations: ATG: autophagy related; bPOI: biochemical premature ovarian insufficiency; CHX: cycloheximide; Co-IP: co-immunoprecipitation; CQ: chloroquine; E2: estradiol; FSH: follicle stimulating hormone; FSHR: follicle stimulating hormone receptor; GC: granulosa cell; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; POI: premature ovarian insufficiency; RAP: rapamycin; siRNA: small interfering RNA; WT1: WT1 transcription factor.


Asunto(s)
Autofagia , Células de la Granulosa , Animales , Autofagia/genética , Cloroquina/farmacología , Estradiol/farmacología , Femenino , Células de la Granulosa/metabolismo , ARN Interferente Pequeño/metabolismo , Factores de Transcripción/metabolismo
15.
Stem Cell Rev Rep ; 18(5): 1834-1850, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35089464

RESUMEN

Primordial follicle activation is fundamental for folliculogenesis and for the maintenance of fertility. An effective therapeutic strategy for patients with premature ovarian insufficiency (POI) is to promote the activation of residual primordial follicles. The secretome of human umbilical cord mesenchymal stromal cells (hUC-MSC-sec) contains several components that might promote the activation of primordial follicles. In the present study, we revealed that treatment with the hUC-MSC-sec significantly increased the proportion of activated primordial follicles in mouse ovaries both in vitro and in vivo. The activating effects of hUC-MSC-sec on primordial follicles were attributed to the activation of the PI3K-AKT signaling pathway by hepatocyte growth factor (HGF). While the effect of the hUC-MSC-sec was attenuated by the neutralizing antibodies against HGF, application of exogenous HGF alone also promoted the activation of primordial follicles. Furthermore, we demonstrated that HGF promoted the expression of KITL in granulosa cells by binding with the HGF receptor c-Met, thereby increasing the activity of the PI3K-AKT signaling pathway to activate primordial follicles. Taken together, our findings demonstrate that hUC-MSC-sec promotes primordial follicle activation through the functional component HGF to increase the PI3K-AKT signaling activity, highlighting the application of the hUC-MSC-sec or HGF for the treatment of POI patients.


Asunto(s)
Células Madre Mesenquimatosas , Insuficiencia Ovárica Primaria , Animales , Femenino , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/farmacología , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Insuficiencia Ovárica Primaria/terapia , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología
16.
Mol Ther Nucleic Acids ; 26: 1092-1106, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34786213

RESUMEN

The list of long non-coding RNAs (lncRNAs) that participate in the function of ovarian granulosa cells (GCs) is rapidly expanding, but the mechanisms through which lncRNAs regulate GC function are not yet fully understood. Here, we recognized a minimally expressed lncRNA RP4-545C24.1 (which we named DDGC) in GCs from patients with biochemical premature ovarian insufficiency (bPOI). We further explored the role of lncRNA DDGC in GC function and its contribution to the development of bPOI. Mechanistically, silencing DDGC downregulated RAD51 by competitively binding with miR-589-5p, and this resulted in significant inhibition of DNA damage repair capacity. In addition, decreased expression of DDGC promoted ubiquitin-mediated degradation of Wilms tumor 1 (WT1) protein through interactions with heat shock protein 90 (HSP90), which led to aberrant differentiation of GCs. Moreover, DDGC was able to ameliorate the etoposide-induced DNA damage and apoptosis in vivo. Taken together, these findings provide new insights into the contribution of lncRNAs in POI pathogenesis.

18.
Cell Death Dis ; 12(8): 780, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34373449

RESUMEN

FANCI is an essential component of Fanconi anemia pathway, which is responsible for the repair of DNA interstrand cross-links (ICLs). As an evolutionarily related partner of FANCD2, FANCI functions together with FANCD2 downstream of FA core complex. Currently, growing evidences showed that the essential role of FA pathway in male fertility. However, the underlying mechanisms for FANCI in regulating spermatogenesis remain unclear. In the present study, we found that the male Fanci-/- mice were sterile and exhibited abnormal spermatogenesis, including massive germ cell apoptosis in seminiferous tubules and dramatically decreased number of sperms in epididymis. Besides, FANCI deletion impaired maintenance of undifferentiated spermatogonia. Further investigation indicated that FANCI was essential for FANCD2 foci formation and regulated H3K4 and H3K9 methylation on meiotic sex chromosomes. These findings elucidate the role and mechanism of FANCI during spermatogenesis in mice and provide new insights into the etiology and molecular basis of nonobstructive azoospermia.


Asunto(s)
Anemia de Fanconi/metabolismo , Histonas/metabolismo , Meiosis , Espermatogénesis , Animales , Apoptosis , Diferenciación Celular , Epigénesis Genética , Eliminación de Gen , Infertilidad Masculina/genética , Lisina/metabolismo , Masculino , Metilación , Ratones , Especificidad de Órganos/genética , Profase , ARN Mensajero/genética , ARN Mensajero/metabolismo , Recombinación Genética/genética , Cromosomas Sexuales/metabolismo , Espermatogonias/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo
19.
Clin Transl Med ; 11(6): e448, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34185428

RESUMEN

Immune dysregulation has long been proposed as a component of premature ovarian insufficiency (POI), but the underlying mediators and mechanisms remain largely unknown. Here we showed that patients with POI had augmented T helper 1 (TH 1) responses and regulatory T (Treg ) cell deficiency in both the periphery and the ovary compared to the control women. The increased ratio of TH 1:Treg cells was strongly correlated with the severity of POI. In mouse models of POI, the increased infiltration of TH 1 cells in the ovary resulted in follicle atresia and ovarian insufficiency, which could be prevented and reversed by Treg cells. Importantly, interferon (IFN) -γ and tumor necrosis factor (TNF) -α cooperatively promoted the apoptosis of granulosa cells and suppressed their steroidogenesis by modulating CTGF and CYP19A1. We have thus revealed a previously unrecognized Treg cell deficiency-mediated TH 1 response in the pathogenesis of POI, which should have implications for therapeutic interventions in patients with POI.


Asunto(s)
Apoptosis , Células de la Granulosa/patología , Insuficiencia Ovárica Primaria/patología , Esteroides/biosíntesis , Linfocitos T Reguladores/inmunología , Células TH1/inmunología , Adulto , Animales , Femenino , Células de la Granulosa/inmunología , Células de la Granulosa/metabolismo , Humanos , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos C57BL , Insuficiencia Ovárica Primaria/etiología , Insuficiencia Ovárica Primaria/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
20.
Sci Rep ; 11(1): 10077, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980954

RESUMEN

STAG3 is essential for male meiosis and testis of male Stag3-/- mice shows the histopathological type of germ cell maturation arrest (MA). Whether variants of the STAG3 gene exist in Chinese idiopathic non-obstructive azoospermia (NOA) patients needs to be determined. We recruited 58 Chinese NOA men with MA who underwent testis biopsy and 192 fertile men as the control group. The 34 exons of the STAG3 gene were amplified using polymerase chain reaction (PCR) and sequenced. We identified eight novel single nucleotide polymorphisms (SNPs), including two missense SNPs (c.433T > C in exon2 and c.553A > G in exon3), three synonymous SNPs (c.539G > A, c.569C > T in exon3, and c.1176C > G in exon8), and three SNPs in introns. The allele and genotype frequencies of the novel and other SNPs have no significant differences between two groups. Our results indicated that variants in the coding sequence of the STAG3 gene were uncommon in NOA patients with MA in Chinese population. Future studies in large cohorts of different ethnic populations will be needed to determine the association between the STAG3 gene and NOA.


Asunto(s)
Azoospermia/patología , Proteínas de Ciclo Celular/genética , Predisposición Genética a la Enfermedad , Células Germinativas/patología , Polimorfismo de Nucleótido Simple , Espermatogénesis , Adulto , Azoospermia/epidemiología , Azoospermia/genética , Estudios de Casos y Controles , China/epidemiología , Genotipo , Células Germinativas/metabolismo , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA