Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Psychoradiology ; 4: kkae005, 2024.
Article En | MEDLINE | ID: mdl-38694267

Background: Schizophrenia is a polygenic disorder associated with changes in brain structure and function. Integrating macroscale brain features with microscale genetic data may provide a more complete overview of the disease etiology and may serve as potential diagnostic markers for schizophrenia. Objective: We aim to systematically evaluate the impact of multi-scale neuroimaging and transcriptomic data fusion in schizophrenia classification models. Methods: We collected brain imaging data and blood RNA sequencing data from 43 patients with schizophrenia and 60 age- and gender-matched healthy controls, and we extracted multi-omics features of macroscale brain morphology, brain structural and functional connectivity, and gene transcription of schizophrenia risk genes. Multi-scale data fusion was performed using a machine learning integration framework, together with several conventional machine learning methods and neural networks for patient classification. Results: We found that multi-omics data fusion in conventional machine learning models achieved the highest accuracy (AUC ~0.76-0.92) in contrast to the single-modality models, with AUC improvements of 8.88 to 22.64%. Similar findings were observed for the neural network, showing an increase of 16.57% for the multimodal classification model (accuracy 71.43%) compared to the single-modal average. In addition, we identified several brain regions in the left posterior cingulate and right frontal pole that made a major contribution to disease classification. Conclusion: We provide empirical evidence for the increased accuracy achieved by imaging genetic data integration in schizophrenia classification. Multi-scale data fusion holds promise for enhancing diagnostic precision, facilitating early detection and personalizing treatment regimens in schizophrenia.

2.
Alpha Psychiatry ; 25(1): 9-14, 2024 Jan.
Article En | MEDLINE | ID: mdl-38799487

Schizophrenia is a severe mental disorder with a neurodevelopmental origin. Although schizophrenia results from changes in the brain, the underlying biological mechanisms are unknown. Transcriptomics studies quantitative expression changes or qualitative changes of all genes and isoforms, providing a more meaningful biological insight. Magnetic resonance imaging (MRI) techniques play roles in revealing brain structure and function. We give a narrative focused review on the current transcriptome combined with MRI studies related to schizophrenia and summarize the research methodology and content of these studies to identify the research commonalities as well as the implications for future research, in an attempt to provide new insights into the mechanism, clinical diagnosis, and treatments of schizophrenia.

3.
Heliyon ; 10(4): e25915, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38404811

Cognitive impairments in schizophrenia are pivotal clinical issues that need to be solved urgently. However, the mechanism remains unknown. It has been suggested that cognitive impairments in schizophrenia are associated with connectome damage, and are especially relevant to the disrupted hub nodes in the frontal and parietal lobes. Activating the dorsolateral prefrontal cortex (DLPFC) via repetitive transcranial magnetic stimulation (rTMS) could result in improved cognition. Based on several previous magnetic resonance imaging (MRI) studies on schizophrenia, we found that the first-episode patients showed connectome damage, as well as abnormal activation and connectivity of the DLPFC and inferior parietal lobule (IPL). Accordingly, we proposed that DLPFC-IPL pathway destruction might mediate connectome damage of cognitive impairments in schizophrenia. In the meantime, with the help of multimodal MRI and noninvasive neuromodulation tool, we may not only validate the hypothesis, but also find IPL as the potential intervention target for cognitive impairments in schizophrenia.

4.
BMC Med ; 21(1): 250, 2023 07 10.
Article En | MEDLINE | ID: mdl-37424013

BACKGROUND: Inflammation has been implicated in the pathology of schizophrenia and may cause neuronal cell death and dendrite loss. Neuroimaging studies have highlighted longitudinal brain structural changes in patients with schizophrenia, yet it is unclear whether this is related to inflammation. We aim to address this question, by relating brain structural changes with the transcriptional profile of inflammation markers in the early stage of schizophrenia. METHODS: Thirty-eight patients with first-episode schizophrenia and 51 healthy controls were included. High-resolution T1-weighted magnetic resonance imaging (MRI) and clinical assessments were performed at baseline and 2 ~ 6 months follow-up for all subjects. Changes in the brain structure were analyzed using surface-based morphological analysis and correlated with the expression of immune cells-related gene sets of interest reported by previous reviews. Transcriptional data were retrieved from the Allen Human Brain Atlas. Furthermore, we examined the brain structural changes and peripheral inflammation markers in association with behavioral symptoms and cognitive functioning in patients. RESULTS: Patients exhibited accelerated cortical thickness decrease in the left frontal cortices, less decrease or an increase in the superior parietal lobule and right lateral occipital lobe, and increased volume in the bilateral pallidum, compared with controls. Changes in cortical thickness correlated with the transcriptional level of monocyte across cortical regions in patients (r = 0.54, p < 0.01), but not in controls (r = - 0.05, p = 0.76). In addition, cortical thickness change in the left superior parietal lobule positively correlated with changes in digital span-backward test scores in patients. CONCLUSIONS: Patients with schizophrenia exhibit regional-specific cortical thickness changes in the prefrontal and parietooccipital cortices, which is related to their cognitive impairment. Inflammation may be an important factor contributing to cortical thinning in first-episode schizophrenia. Our findings suggest that the immunity-brain-behavior association may play a crucial role in the pathogenesis of schizophrenia.


Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Schizophrenia/genetics , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , Cognition , Cerebral Cortex/pathology
5.
BMC Psychiatry ; 23(1): 526, 2023 07 21.
Article En | MEDLINE | ID: mdl-37479996

BACKGROUND: Cognitive impairment is the main factor in the poor prognosis of schizophrenia, but its mechanism remains unclear. The inferior parietal lobule (IPL) is related to various clinical symptoms and cognitive impairment in schizophrenia. We aimed to explore the relationship between IPL-related functions and cognitive impairment in schizophrenia. METHODS: 136 schizophrenia patients and 146 demographically matched healthy controls were enrolled for a cross-sectional study. High-spatial-resolution structural and resting-state functional images were acquired to demonstrate the alternations of brain structure and function. At the same time, the digit span and digit symbol coding tasks of the Chinese Wechsler Adult Intelligence Test Revised (WAIS-RC) were utilized in assessing the subjects' cognitive function. Patients were divided into cognitive impairment and normal cognitive groups according to their cognitive score and then compared whether there were differences between the three groups in fractional amplitude of low-frequency fluctuation (fALFF). In addition, we did a correlation analysis between cognitive function and the fALFF for the left IPL of patients and healthy controls. Based on the Allen Human Brain Atlas, we obtained genes expressed in the left IPL, which were then intersected with the transcriptome-wide association study results and differentially expressed genes in schizophrenia. RESULTS: Grouping of patients by the backward digit span task and the digit symbol coding task showed differences in fALFF values between healthy controls and cognitive impairment patients (P < 0.05). We found a negative correlation between the backward digit span task score and fALFF of the left IPL in healthy controls (r = - 0.388, P = 0.003), which was not seen in patients (r = 0.203, P = 0.020). In addition, none of the other analyses were statistically significant (P > 0.017). In addition, we found that diacylglycerol kinase ζ (DGKζ) is differentially expressed in the left IPL and associated with schizophrenia. CONCLUSION: Our study demonstrates that the left IPL plays a vital role in cognitive impairment in schizophrenia. DGKζ may act as an essential regulator in the left IPL of schizophrenia patients with cognitive impairment.


Cognitive Dysfunction , Schizophrenia , Adult , Humans , Cognitive Dysfunction/complications , Cross-Sectional Studies , Diacylglycerol Kinase , Parietal Lobe , Schizophrenia/complications
6.
Front Psychiatry ; 14: 1185471, 2023.
Article En | MEDLINE | ID: mdl-37383618

Major psychiatric disorders create a significant public health burden, and mental disorders such as major depressive disorder, bipolar disorder, and schizophrenia are major contributors to the national disease burden. The search for biomarkers has been a leading endeavor in the field of biological psychiatry in recent decades. And the application of cross-scale and multi-omics approaches combining genes and imaging in major psychiatric studies has facilitated the elucidation of gene-related pathogenesis and the exploration of potential biomarkers. In this article, we summarize the results of using combined transcriptomics and magnetic resonance imaging to understand structural and functional brain changes associated with major psychiatric disorders in the last decade, demonstrating the neurobiological mechanisms of genetically related structural and functional brain alterations in multiple directions, and providing new avenues for the development of quantifiable objective biomarkers, as well as clinical diagnostic and prognostic indicators.

7.
Psychoradiology ; 3: kkad019, 2023.
Article En | MEDLINE | ID: mdl-38666113

Catatonia is a psychomotor syndrome that can occur in a broad spectrum of brain disorders, including schizophrenia. Current findings suggest that the neurobiological process underlying catatonia symptoms in schizophrenia is poorly understood. However, emerging neuroimaging studies in catatonia patients have indicated that a disruption in anatomical connectivity of the cortico-striatal-cerebellar system is part of the neurobiology of catatonia, which could serve as a target of neurostimulation such as electroconvulsive therapy and repetitive transcranial magnetic stimulation.

9.
J Integr Neurosci ; 21(5): 139, 2022 Jul 27.
Article En | MEDLINE | ID: mdl-36137953

As a non-invasive detection method and an advanced imaging method, magnetic resonance imaging (MRI) has been widely used in the research of schizophrenia. Although a large number of neuroimaging studies have confirmed that MRI can display abnormal brain phenotypes in patients with schizophrenia, no valid uniform standard has been established for its clinical application. On the basis of previous evidence, we argue that MRI is an important tool throughout the whole clinical course of schizophrenia. The purpose of this commentary is to systematically describe the role of MRI in schizophrenia and to provide references for its clinical application.


Schizophrenia , Brain/diagnostic imaging , Brain/pathology , Humans , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Schizophrenia/diagnostic imaging
10.
Eur J Neurosci ; 55(8): 2024-2036, 2022 04.
Article En | MEDLINE | ID: mdl-35388553

Attempts to determine why some patients respond to electroconvulsive therapy (ECT) are valuable in schizophrenia. Schizophrenia is associated with aberrant dynamic functional architecture, which might impact the efficacy of ECT. We aimed to explore the relationship between pre-treatment temporal variability and ECT acute efficacy. Forty-eight patients with schizophrenia and 30 healthy controls underwent functional magnetic resonance imaging to examine whether patterns of temporary variability of functional architecture differ between high responders (HR) and low responders (LR) at baseline. Compared with LR, HR exhibited significantly abnormal temporal variability in right inferior front gyrus (IFGtriang.R), left temporal pole (TPOsup.L) and right middle temporal gyrus (MTG.R). In the pooled patient group, ∆PANSS was correlated with the temporal variability of these regions. Patients with schizophrenia with a distinct dynamic functional architecture appear to reveal differential response to ECT. Our findings provide not only an understanding of the neural functional architecture patterns that are found in schizophrenia but also the possibility of using these measures as moderators for ECT selection.


Antipsychotic Agents , Electroconvulsive Therapy , Schizophrenia , Antipsychotic Agents/therapeutic use , Electroconvulsive Therapy/methods , Humans , Magnetic Resonance Imaging/methods , Schizophrenia/drug therapy , Schizophrenia/therapy , Temporal Lobe
11.
Front Hum Neurosci ; 15: 777043, 2021.
Article En | MEDLINE | ID: mdl-34744673

Introduction: Cognitive decline is the core schizophrenia symptom, which is now well accepted. Holding a role in various aspects of cognition, lentiform nucleus (putamen and globus pallidus) dysfunction contributes to the psychopathology of this disease. However, the effects of lentiform nucleus function on cognitive impairments in schizophrenia are yet to be investigated. Objectives: We aim to detect the fractional amplitude of low-frequency fluctuation (fALFF) alterations in patients with schizophrenia, and examine how their behavior correlates in relation to the cognitive impairments of the patients. Methods: All participants underwent magnetic resonance imaging (MRI) and cognitive assessment (digit span and digit symbol coding tests). Screening of brain regions with significant changes in fALFF values was based on analysis of the whole brain. The data were analyzed between Jun 2020 and Mar 2021. There were no interventions beyond the routine therapy determined by their clinicians on the basis of standard clinical practice. Results: There were 136 patients (75 men and 61 women, 24.1 ± 7.4 years old) and 146 healthy controls (82 men and 64 women, 24.2 ± 5.2 years old) involved in the experiments seriatim. Patients with schizophrenia exhibited decreased raw scores in cognitive tests (p < 0.001) and increased fALFF in the bilateral lentiform nuclei (left: 67 voxels; x = -24, y = -6, z = 3; peak t-value = 6.90; right: 16 voxels; x = 18, y = 0, z = 3; peak t-value = 6.36). The fALFF values in the bilateral lentiform nuclei were positively correlated with digit span-backward test scores (left: r = 0.193, p = 0.027; right: r = 0.190, p = 0.030), and the right lentiform nucleus was positively correlated with digit symbol coding scores (r = 0.209, p = 0.016). Conclusion: This study demonstrates that cognitive impairments in schizophrenia are associated with lentiform nucleus function as revealed by MRI, involving working memory and processing speed.

12.
Front Hum Neurosci ; 15: 720239, 2021.
Article En | MEDLINE | ID: mdl-34566604

Schizophrenia is a complex mental illness with genetic heterogeneity, which is often accompanied by alterations in brain structure and function. The neurobiological mechanism of schizophrenia associated with heredity remains unknown. Recently, the development of trans-scale and multi-omics methods that integrate gene and imaging information sheds new light on the nature of schizophrenia. In this article, we summarized the results of brain structural and functional changes related to the specific single-nucleotide polymorphisms (SNPs) in the past decade, and the SNPs were divided into non-coding regions and coding regions, respectively. It is hoped that the relationship between SNPs and cerebral alterations can be displayed more clearly and intuitively, so as to provide fresh approaches for the discovery of potential biomarkers and the development of clinical accurate individualized treatment decision-making.

...