Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J R Soc Interface ; 21(214): 20230625, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38715322

RESUMEN

Peer effects can directly or indirectly rely on interaction networks to drive people to follow ideas or behaviours triggered by a few individuals, and such effects can be largely improved by targeting the so-called influential individuals. In this article, we study the current most promising seeding strategy used in field experiments, the one-hop strategy, where the underlying interaction networks are generally too impractical or prohibitively expensive to be obtained, and propose an individual-centralized seeding approach to target influential seeds in information-limited networks. The presented strategy works by reasonable follow-up questions to respondents, such as Who do you think has more connections/friends?, and constructs the seeding set by those nodes with the most nominations. In this manner, the proposed method could acquire more information about the studied interaction network from the inference of respondents without surveying additional individuals. We evaluate our strategy on networks from various experimental datasets. Results show that the obtained seeds are much more influential compared to the one-hop strategy and other methods. We also show how the proposed approach could be implemented in field studies and potentially provide better interventions in real scenarios.


Asunto(s)
Modelos Teóricos , Humanos
2.
Sensors (Basel) ; 23(12)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37420836

RESUMEN

Palpation is a simple but effective method to distinguish tumors from healthy tissues. The development of miniaturized tactile sensors embedded on endoscopic or robotic devices is key to achieving precise palpation diagnosis and subsequent timely treatment. This paper reports on the fabrication and characterization of a novel tactile sensor with mechanical flexibility and optical transparency that can be easily mounted on soft surgical endoscopes and robotics. By utilizing the pneumatic sensing mechanism, the sensor offers a high sensitivity of 1.25 mbar and negligible hysteresis, enabling the detection of phantom tissues with different stiffnesses ranging from 0 to 2.5 MPa. Our configuration, combining pneumatic sensing and hydraulic actuating, also eliminates electrical wiring from the functional elements located at the robot end-effector, thereby enhancing the system safety. The optical transparency path in the sensors together with its mechanical sensing capability open interesting possibilities in the early detection of solid tumor as well as in the development of all-in-one soft surgical robots that can perform visual/mechanical feedback and optical therapy.


Asunto(s)
Neoplasias , Robótica , Humanos , Endoscopía , Tacto , Palpación
3.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36015171

RESUMEN

Facilitated endogenous tissue engineering, as a facile and effective strategy, is emerging for use in bone tissue regeneration. However, the development of bioactive scaffolds with excellent osteo-inductivity to recruit endogenous stem cells homing and differentiation towards lesion areas remains an urgent problem. Chitosan (CS), with versatile qualities including good biocompatibility, biodegradability, and tunable physicochemical and biological properties is undergoing vigorously development in the field of bone repair. Based on this, the review focus on recent advances in chitosan-based scaffolds for facilitated endogenous bone regeneration. Initially, we introduced and compared the facilitated endogenous tissue engineering with traditional tissue engineering. Subsequently, the various CS-based bone repair scaffolds and their fabrication methods were briefly explored. Furthermore, the functional design of CS-based scaffolds in bone endogenous regeneration including biomolecular loading, inorganic nanomaterials hybridization, and physical stimulation was highlighted and discussed. Finally, the major challenges and further research directions of CS-based scaffolds were also elaborated. We hope that this review will provide valuable reference for further bone repair research in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA