Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Environ Res ; 242: 117715, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-37996000

The thermocatalytic conversion of carbon dioxide (CO2) into high value-added chemicals provides a strategy to address the environmental problems caused by excessive carbon emissions and the sustainable production of chemicals. Significant progress has been made in the CO2 hydrogenation to long chain α-olefins, but controlling C-O activation and C-C coupling remains a great challenge. This review focuses on the recent advances in catalyst design concepts for the synthesis of long chain α-olefins from CO2 hydrogenation. We have systematically summarized and analyzed the ingenious design of catalysts, reaction mechanisms, the interaction between active sites and supports, structure-activity relationship, influence of reaction process parameters on catalyst performance, and catalyst stability, as well as the regeneration methods. Meanwhile, the challenges in the development of the long chain α-olefins synthesis from CO2 hydrogenation are proposed, and the future development opportunities are prospected. The aim of this review is to provide a comprehensive perspective on long chain α-olefins synthesis from CO2 hydrogenation to inspire the invention of novel catalysts and accelerate the development of this process.


Alkenes , Carbon Dioxide , Hydrogenation
2.
RSC Adv ; 13(32): 22493-22502, 2023 Jul 19.
Article En | MEDLINE | ID: mdl-37497091

A series of Cu-ZnO-Al2O3 catalysts (CZA) were prepared by glucose pretreatment and applied for methanol synthesis from CO2 hydrogenation. The advantages of the glucose pretreatment and the effects of glucose content were investigated by XRD, N2 physisorption, SEM, N2O chemisorption, CO2-TPD, H2-TPR, TG, and XPS characterization techniques. The influence of glucose pretreatment on the average Cu particle size and the interaction between different components, as well as the effects of the amount of glucose on the Cu specific surface area, the ratio of Cu0/Cu+ and the performance of the catalysts were discussed. The results showed that the catalysts prepared by glucose pretreatment increased the number of basic sites and had a significant advantage in methanol yield. The optimum content of glucose was beneficial to improve the catalytic performance of the CZA catalyst. The maximum space-time yield of methanol was obtained by 2 wt% glucose pretreatments at 200 °C, which was 57.0 g kg-1 h-1.

3.
ACS Omega ; 7(50): 46384-46390, 2022 Dec 20.
Article En | MEDLINE | ID: mdl-36570262

Ethanolysis of lignite is an effective approach for converting organic matter of lignite to liquid coal derivatives. Xilinguole lignite (XL) was reacted with ethanol at 320 °C. Then ethanol and isometric carbon disulfide/acetone mixture were used to extract the reaction mixture in a modified Soxhlet extractor to afford extractable portion 1 (EP1) and extractable portion 2 (EP2), respectively. According to analysis of EP1 with a gas chromatography/mass spectrometer, phenolic compounds made up more than 33% of the compounds detected. This could be ascribed to the ethanolysis of XL; that is, ethanol could selectively break the Calkyl-O bonds in lignite, producing more phenolic compounds. Furthermore, a quadrupole Orbitrap mass spectrometer equipped with an atmospheric pressure chemical ionization source was used for comprehensive analysis of the compositional features of EP1. The analysis indicated that O1-3, N1O0-2, and N2S1O3-6 were predominant class species in EP1. Nitrogen atoms in NO-containing organic compounds may exist in the form of pyridine or amidogen, while oxygen atoms primarily exist in furan, alkoxy, carbonyl, and ester groups. In addition, possible chemical structures of NO-containing organic compounds were speculated.

4.
Chemosphere ; 309(Pt 1): 136684, 2022 Dec.
Article En | MEDLINE | ID: mdl-36195125

Antifouling properties are considered to be crucial parameter to polyamide (PA) composite nanofiltration (NF) membranes for practical applications. In this study, an antifouling material, surface zwitterionization of Metal-organic frameworks (Z-MIL-101 (Cr)) was firstly prepared by decorating zwitterionic polymer onto the MOFs surface. Subsequently, a novel type of MOFs-based hybrid membranes were fabricated via mixing the Z-MIL-101 (Cr) nanoparticle with the organic matrix by interfacial polymerization technique. The most optimal hybrid membrane had a high water permeation of 26 L m-2 h-1 bar-1, which was 2.1 times higher than that pristine PA membrane, while the retention for Na2SO4 was still kept at a considerably high value of 93%. The significant increased water flue can attribute to the existence of water channels generated by the Z-MIL-101 (Cr). More important, the antifouling property of the hybrid membrane was much better than that pristine PA, which was due to the formation of superhydrophilic liquid layer surrounding the zwitterionic groups. The combination of the micropore structure of the MOFs and the excellent antifouling properties of the decorated zwitterionic polymer effectively improved separation performances and antifouling ability, which makes these hybrid membranes promising for water purification.


Biofouling , Metal-Organic Frameworks , Nylons/chemistry , Metal-Organic Frameworks/chemistry , Biofouling/prevention & control , Membranes, Artificial , Water , Polymers/chemistry
5.
Fitoterapia ; 162: 105260, 2022 Oct.
Article En | MEDLINE | ID: mdl-35931289

Twelve sesquiterpenoids with seven different carbon skeletons, including four isodaucanes (1-4), an aromadendrane (5), a guaiane (6), a cadalane (7), two eudesmanes (8 and 9), two bisabolanes (10 and 11), and a megastigmane (12), were isolated from the twigs and leaves of Aglaia lawii (Wight) C. J. Saldanha et Ramamorthy. Of these compounds, amouanglienoids A (1) and B (2) are new isodaucane sesquiterpenoids. This is the first report of isodaucanes from the genus Aglaia, and amouanglienoid A (1) represents the first isodaucane containing a Δ7(8) double bond. Their structures were discerned from extensive spectroscopic analyses, single-crystal X-ray diffraction, and comparison of the experimental and calculated ECD data. In in vitro bioassays, compounds 1, 10, and 11 showed potent inhibitory effects against lipopolysaccharide (LPS)-induced inflammation in BV-2 microglial cells, while compound 11 exhibited considerable inhibition of PTP1B with an IC50 value of 16.05 ± 1.09 µM.


Aglaia , Sesquiterpenes, Eudesmane , Sesquiterpenes , Aglaia/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Carbon , Lipopolysaccharides , Molecular Structure , Monocyclic Sesquiterpenes , Norisoprenoids , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes, Eudesmane/chemistry
6.
ACS Omega ; 7(19): 16817-16826, 2022 May 17.
Article En | MEDLINE | ID: mdl-35601319

g-C3N4-based materials show potential for photoreduction of CO2 to oxygenates but are subjected to fast recombination of photogenerated charge carriers. Here, a novel Cu-dispersive protonated g-C3N4 (PCN) metal-semiconductor (m-s) heterojunction from thermal reduction of a Cu2O/PCN precursor was prepared and characterized using in situ X-ray diffraction, scanning transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet-visible (UV-vis) spectra, photoluminescence (PL) spectra, transient photocurrent response, and electrochemical impedance spectroscopy (EIS). The Cu amount in Cu/PCN and the reduction temperature affected the generation of CH3OH and C2H5OH from the photoreaction of CO2-aerated H2O. During calcination of Cu2O/PCN in N2 at 550 °C, Cu2O was completely reduced to Cu with even dispersion, and a m-s heterojunction was obtained. With thermal exfoliation, Cu/PCN showed a specific surface area and layer spacing larger than those of PCN. Cu/PCN-0.5 (12.8 wt % Cu) exhibited a total carbon yield of 25.0 µmol·g-1 under UV-vis irradiation for 4 h, higher than that of Cu2O/PCN (13.6 µmol·g-1) and PCN (6.0 µmol·g-1). The selectivity for CH3OH and C2H5OH was 51.42 and 46.14%, respectively. The PL spectra, transient photocurrent response, and EIS characterizations indicated that Cu/PCN heterojunction promotes the separation of electrons and holes and suppresses their recombination. The calculated conduction band position was more negative, which is conducive to the multielectron reactions for CH3OH and C2H5OH generation.

7.
ACS Omega ; 7(8): 7278-7286, 2022 Mar 01.
Article En | MEDLINE | ID: mdl-35252717

Adopting the concurrent reduction of Cu2O during hydrothermal preparation of ZnV2O4, metal-semiconductor heterojunction Cu/ZnV2O4 nanorods were synthesized and applied to the catalytic generation of methanol and ethanol from CO2 aerated water under UV-vis light irradiation. 10Cu/ZnV2O4 obtained from 10 wt % composite amount of Cu2O exhibited a total carbon yield of 6.49 µmol·g-1·h-1. The yield of CH3OH and C2H5OH reached 3.30 and 0.86 µmol·g-1·h-1, respectively. 2.5Cu/ZnV2O4 displayed the highest ethanol yield of 1.58 µmol·g-1·h-1 due to the strong absorption in the visible light. Cu/ZnV2O4 was characterized using X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-vis) spectra, photoluminescence (PL) spectra, transient photocurrent response, and electrochemical impedance spectroscopy (EIS). Results showed that composite Cu0-ZnV2O4 increased the surface area and tuned the energy band position, which matches the reaction potential toward methanol and ethanol. The photocatalytic activity toward CH3OH and C2H5OH on Cu/ZnV2O4 is attributed to faster transmission and a slow recombination rate of photogenerated carriers at the heterojunction interface. Multielectron reactions for the production of CH3OH and C2H5OH are promoted. Free radical capture experiments indicated that the active species boost the reaction in the order of •OH > e- > h+.

8.
Fitoterapia ; 146: 104716, 2020 Oct.
Article En | MEDLINE | ID: mdl-32866541

A phytochemical investigation on the MeOH extract of the red alga Laurencia composita Yamada led to the discovery of six new highly halogenated sesquiterpenoids, including two bisabolane-type sesquiterpenoids (1 and 2), one nerolidol derivative (7), and three chamigrane-type sesquiterpenoids (9, 10, and 18), together with 13 known sesquiterpenoids. Their structures, including relative configuration, were elucidated by extensive spectroscopic analysis, and by comparison with data for related known compounds. The absolute configuration at C-10 of laurecomposin A (1) was determined by the modified Mosher's method. Halonerolidol (7) is the first naturally occurring halogenated nerolidol derivative, while compositacin L (9) represents the third example of chamigranes having a C-10 carbonyl group. Antifungal, antibacterial, and receptor tyrosine kinase inhibitory activities of these isolates were evaluated. The results showed that compounds 1-3 and 5 exhibited significant antifungal activity against Microsporum gypseum (Cmccfmza) with MIC values of 4, 8, 8, and 4 µg/mL, respectively. Additionally, compounds 1-3 and 5 also displayed promising antibacterial activity against Gram-positive bacteria Staphylococcus aureus Newman strain with MIC values ranging from 10.9 to 26.8 µg/mL.


Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Laurencia/chemistry , Sesquiterpenes/pharmacology , Anti-Bacterial Agents/isolation & purification , Antifungal Agents/isolation & purification , Arthrodermataceae/drug effects , Biological Products/isolation & purification , Biological Products/pharmacology , China , Molecular Structure , Protein-Tyrosine Kinases/metabolism , Sesquiterpenes/isolation & purification , Staphylococcus aureus/drug effects
9.
J Sep Sci ; 43(4): 839-846, 2020 Feb.
Article En | MEDLINE | ID: mdl-31785184

Dayan lignite was subjected to thermal dissolution sequentially with cyclohexane, acetone, and methanol. Each thermal dissolution extract was subjected to further separation/enrichment using column chromatography, which was sequentially eluted with petroleum ether, a mixture of ethyl acetate and petroleum ether (vol:vol = 1:1), and ethyl acetate. The three thermal dissolution extracts and nine enrichment subfractions were characterized by an Orbitrap mass spectrometry equipped with an atmospheric pressure chemical ionization ion source. The mass spectrometry data were also statistically analyzed by principal component analysis, which can reduce the dimensionality of data and classify multiple samples according to principal components. Identified compounds in the extracts and subfractions are classified into eight classes according to the heteroatom distribution. Hydrocarbon class is mainly presented in the petroleum ether fraction, and oxygen class, nitrogen class, and oxygen-nitrogen class are distributed in both petroleum ether/ethyl acetate and ethyl acetate subfractions. The combination of different analytical methods enhances the understanding of coal at the molecular level and provides important data for downstream refining processes.

10.
Fitoterapia ; 130: 241-246, 2018 Oct.
Article En | MEDLINE | ID: mdl-30196076

Three new cholestane-type sterols bearing an unusual ∆22-24-oxo side chain, namely, dictyoptesterols A-C (1-3), were isolated from the brown alga Dictyopteris undulata Holmes, together with five known strutural analogues (4-8). Their structures were elucidated on the basis of by extensive spectroscopic analysis. The absolute configurations of the steroidal nuclei of the new compounds were proposed by a comparison of NMR data with those of related known compounds as well as biogenetic considerations. All of the isolates were evaluated in vitro for their potential to inhibit protein tyrosine phosphatase-1B (PTP1B) activity. The results showed that compounds 1-5 exhibited different levels of PTP1B inhibitory activities with IC50 values ranging from 3.03 ±â€¯0.76 to 15.01 ±â€¯2.88 µM. In particular, compounds 3 and 4 showed promising inhibitory effects towards PTP1B with IC50 values of 3.03 ±â€¯0.76 and 3.72 ±â€¯0.40 µM, respectively, when compared to the positive control oleanolic acid (IC50, 2.83 ±â€¯0.39 µM). The chemotaxonomic significance of these isolated ∆22-24-oxo cholestanes has also been discussed.


Cholestanes/isolation & purification , Enzyme Inhibitors/isolation & purification , Phaeophyceae/chemistry , Phytosterols/isolation & purification , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , China , Cholestanes/pharmacology , Enzyme Inhibitors/pharmacology , Molecular Structure , Phytosterols/pharmacology
...