Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 53
1.
Food Chem ; 456: 140031, 2024 Jun 08.
Article En | MEDLINE | ID: mdl-38870821

Lyonia ovalifolia (Wall.) Drude (LO) is mainly distributed in China with health benefits. In this study, LO buds (LOB) were extracted by ultrasonic extraction (UE) with or without ultra-high-pressure (UHP-UE), microwave (MW-UE), subcritical (SC-UE) techniques. The metabolomic result showed that a total of 960 chemical compounds and 117 differential compounds were identified from LOB extracts. The UHP-UE extract was rich in total polyphenol and flavonoid contents, followed by MW-UE, UE and SC-UE extracts, respectively. All LOB extracts increased superoxide dismutase (SOD) and catalase (CAT) activities, and glutathione (GSH) content, decreased reactive oxygen species (ROS) accumulation, levels of interleukin-6 (IL-6), interleukin-1ß (IL-1ß), tumor necrosis factor -α (TNF-α), and nitric oxide (NO), and alleviated apoptosis in cells. The cellular protective effect was UHP-UE > MW-UE > UE > SC-UE. This study revealed that higher pressure and lower temperature may be key factors for increasing bioactivities of LOB extracts.

2.
Magn Reson Med ; 92(2): 605-617, 2024 Aug.
Article En | MEDLINE | ID: mdl-38440807

PURPOSE: Directly imaging the function of cerebral perforating arteries could provide valuable insight into the pathology of cerebral small vessel diseases (cSVD). Arterial pulsatility has been identified as a useful biomarker for assessing vascular dysfunction. In this study, we investigate the feasibility and reliability of using dual velocity encoding (VENC) phase-contrast MRI (PC-MRI) to measure the pulsatility of cerebral perforating arteries at 7 T. METHODS: Twenty participants, including 12 young volunteers and 8 elder adults, underwent high-resolution 2D PC-MRI scans with VENCs of 20 cm/s and 40 cm/s at 7T. The sensitivity of perforator detection and the reliability of pulsatility measurement of cerebral perforating arteries using dual-VENC PC-MRI were evaluated by comparison with the single-VENC data. The effects of temporal resolution in the PC-MRI acquisition and aging on the pulsatility measurements were investigated. RESULTS: Compared to the single VENCs, dual-VENC PC-MRI provided improved sensitivity of perforator detection and more reliable pulsatility measurements. Temporal resolution impacted the pulsatility measurements, as decreasing temporal resolution led to an underestimation of pulsatility. Elderly adults had elevated pulsatility in cerebral perforating arteries compared to young adults, but there was no difference in the number of detected perforators between the two age groups. CONCLUSION: Dual-VENC PC-MRI is a reliable imaging method for the assessment of pulsatility of cerebral perforating arteries, which could be useful as a potential imaging biomarker of aging and cSVD.


Cerebral Arteries , Magnetic Resonance Imaging , Pulsatile Flow , Humans , Female , Male , Adult , Aged , Reproducibility of Results , Cerebral Arteries/diagnostic imaging , Cerebral Arteries/physiology , Pulsatile Flow/physiology , Magnetic Resonance Imaging/methods , Middle Aged , Young Adult , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebrovascular Circulation/physiology , Blood Flow Velocity/physiology , Magnetic Resonance Angiography/methods , Image Processing, Computer-Assisted/methods
3.
Molecules ; 29(6)2024 Mar 20.
Article En | MEDLINE | ID: mdl-38543018

Que Zui tea (QT) is an important herbal tea in the diet of the 'Yi' people, an ethnic group in China, and it has shown significant antioxidant, anti-inflammatory, and hepatoprotective effects in vitro. This study aims to explore the protective effects of the aqueous-ethanol extract (QE) taken from QT against ᴅ-galactose (ᴅ-gal)-induced oxidative stress damage in mice and its potential mechanisms. QE was identified as UHPLC-HRMS/MS for its chemical composition and possible bioactive substances. Thus, QE is rich in phenolic and flavonoid compounds. Twelve compounds were identified, the main components of which were chlorogenic acid, quinic acid, and 6'-O-caffeoylarbutin. Histopathological and biochemical analysis revealed that QE significantly alleviated brain, liver, and kidney damage in ᴅ-gal-treated mice. Moreover, QE remarkably attenuated oxidative stress by activating the Nrf2/HO-1 pathway to increase the expression of antioxidant indexes, including GSH, GSH-Px, CAT, SOD, and T-AOC. In addition, QE administration could inhibit the IL-1ß and IL-6 levels, which suppress the inflammatory response. QE could noticeably alleviate apoptosis by inhibiting the expressions of Caspase-3 and Bax proteins in the brains, livers, and kidneys of mice. The anti-apoptosis mechanism may be related to the upregulation of the SIRT1 protein and the downregulation of the p53 protein induced by QE in the brain, liver, and kidney tissues of mice. Molecular docking analysis demonstrated that the main components of QE, 6'-O-caffeoylarbutin, chlorogenic acid, quinic acid, and robustaside A, had good binding ability with Nrf2 and SIRT1 proteins. The present study indicated that QE could alleviate ᴅ-gal-induced brain, liver and kidney damage in mice by inhibiting the oxidative stress and cell apoptosis; additionally, the potential mechanism may be associated with the SIRT1/Nrf2 signaling pathway.


Antioxidants , Arbutin/analogs & derivatives , Caffeic Acids , Galactose , Humans , Mice , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Galactose/adverse effects , NF-E2-Related Factor 2/metabolism , Sirtuin 1/metabolism , Chlorogenic Acid/pharmacology , Molecular Docking Simulation , Quinic Acid/pharmacology , Oxidative Stress , Signal Transduction , Tea
4.
Gene ; 907: 148276, 2024 May 20.
Article En | MEDLINE | ID: mdl-38360128

Cold is a common stressor that threatens colonic health by affecting internal homeostasis. From the literature, Silent information regulator 2 (SIRT2) may have important roles during cold stress, but this conjecture requires investigation. To address this knowledge gap, we investigated the effects of SIRT2 on colonic injury in chronically cold-exposure mice. In a previous study, we showed that SIRT2 regulated p65 activation after cold exposure. In the current study, mice were exposed to 4 °C for 3 h/day for 3 weeks to simulate a chronic cold exposure environment. Chronic cold exposure shortened colon length, disrupted tight junctions in colonic epithelial tissue, and disordered colonic flora. Chronic cold exposure also increased p65 acetylation levels, promoted nuclear factor (NF)-κB activation, and increased the expression of its downstream pro-inflammatory factors, while SIRT2 knockdown aggravated the consequences of tissue structure disruption and increased inflammatory factors brought about by chronic cold exposure to some extent, but could alleviate the downregulation of colonic tight junction-related proteins to some extent. We also observed direct SIRT2 regulatory effects toward p65, and in Caco-2 cells treated with lipopolysaccharide (LPS), SIRT2 knockdown increased p65 acetylation levels and pro-inflammatory factor expression, while SIRT2 overexpression reversed these phenomena. Therefore, SIRT2 deletion exacerbated chronic cold exposure-induced colonic injury and p65 activation in mice. Mechanistically, p65 modification by SIRT2 via deacetylation may affect NF-κB signaling. These findings suggest that SIRT2 is a key target of colonic health maintenance under chronic cold exposure conditions.


Colon , NF-kappa B , Sirtuin 2 , Animals , Humans , Mice , Caco-2 Cells , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , Signal Transduction , Sirtuin 2/genetics , Transcription Factor RelA/metabolism , Colon/injuries , Colon/pathology , Cold Temperature/adverse effects
5.
J Hazard Mater ; 465: 133411, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38181596

Excessive consumption of fluoride can cause skeletal fluorosis. Mitophagy has been identified as a novel target for bone disorders. Meanwhile, calcium supplementation has shown great potential for mitigating fluoride-related bone damage. Hence, this study aimed to elucidate the association between mitophagy and skeletal fluorosis and the precise mechanisms through which calcium alleviates these injuries. A 100 mg/L sodium fluoride (NaF) exposure model in Parkin knockout (Parkin-/-) mice and a 100 mg/L NaF exposure mouse model with 1% calcium carbonate (CaCO3) intervention were established in the current study. Fluoride exposure caused the impairment of mitochondria and activation of PTEN-induced putative kinase1 (PINK1)/E3 ubiquitin ligase Park2 (Parkin)-mediated mitophagy and mitochondrial apoptosis in the bones, which were restored after blocking Parkin. Additionally, the intervention model showed fluoride-exposed mice exhibited abnormal bone trabecula and mechanical properties. Still, these bone injuries could be effectively attenuated by adding 1% calcium to their diet, which reversed fluoride-activated mitophagy and apoptosis. To summarize, fluoride can activate bone mitophagy through the PINK1/Parkin pathway and mitochondrial apoptosis. Parkin-/- and 1% calcium provide protection against fluoride-induced bone damage. Notably, this study provides theoretical bases for the prevention and therapy of animal and human health and safety caused by environmental fluoride contamination.


Fluorides , Mitophagy , Humans , Mice , Animals , Fluorides/pharmacology , Calcium/metabolism , Protein Kinases/metabolism , Protein Kinases/pharmacology , Mitochondria , Ubiquitin-Protein Ligases , Apoptosis , Dietary Supplements
6.
Cells ; 12(22)2023 11 10.
Article En | MEDLINE | ID: mdl-37998339

E. coli is a ubiquitous pathogen that is responsible for over one million fatalities worldwide on an annual basis. In animals, E. coli can cause a variety of diseases, including mastitis in dairy cattle, which represents a potential public health hazard. However, the pathophysiology of E. coli remains unclear. We found that E. coli could induce global upregulation of m6A methylation and cause serious apoptosis in bovine mammary epithelial cells (MAC-T cells). Furthermore, numerous m6A-modified lncRNAs were identified through MeRIP-seq. Interestingly, we found that the expression of LOC4191 with hypomethylation increased in MAC-T cells upon E. coli-induced apoptosis. Knocking down LOC4191 promoted E. coli-induced apoptosis and ROS levels through the caspase 3-PARP pathway. Meanwhile, knocking down ALKBH5 resulted in the promotion of apoptosis through upregulated ROS and arrested the cell cycle in MAC-T cells. ALKBH5 silencing accelerated LOC4191 decay by upregulating its m6A modification level, and the process was recognized by hnRNP A1. Therefore, this indicates that ALKBH5 stabilizes m6A-modified LOC4191 to suppress E. coli-induced apoptosis. This report discusses an initial investigation into the mechanism of m6A-modified lncRNA in cells under E. coli-induced apoptosis and provides novel insights into infectious diseases.


Apoptosis , Escherichia coli , Female , Animals , Cattle , Escherichia coli/metabolism , Reactive Oxygen Species/metabolism , Apoptosis/genetics , DNA Methylation
7.
Int J Mol Sci ; 24(16)2023 Aug 10.
Article En | MEDLINE | ID: mdl-37628832

The aim of this study was to investigate the chemical composition and antioxidant capacity of various polar fractions obtained from Dendrobium fimbriatum Hook (DH). First, a 90% ethanol-aqueous extract of DH (CF) was subjected to sequential fractionation using different organic solvents, resulting in the isolation of a methylene chloride fraction (DF), an ethyl acetate fraction (EF), an n-butanol fraction (BF), and a remaining water fraction (WF) after condensation. Additionally, the CF was also subjected to column chromatography via a D101 macroreticular resin column, eluted with ethanol-aqueous solution to yield six fractions (0%, 20%, 40%, 60%, 80%, and 100%). UPLC-Q-Exactive Orbitrap-MS/MS analysis identified a total of 47 chemical compounds from these polar fractions, including fatty acids, amino acids, phenolic acids, flavonoids, organic heterocyclic molecules, and aromatic compounds. Moreover, DF, EF, and the 60%, 80%, and 100% ethanol-aqueous fractions had higher total phenol content (TPC) and total flavonoid content (TFC) values and greater 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS-) and 1,1-diphenyl-2-picrylhydrazyl (DPPH)-scavenging abilities. In H2O2-induced HepG2 cells, the aforementioned fractions could increase the activities of antioxidative enzymes NAD(P)H: quinone oxidoreductase 1 (NQO1), superoxide dismutase (SOD), heme oxygenase-1 (HO-1) and catalase (CAT), stimulate glutathione (GSH) synthesis by increasing the activities of glutamic acid cysteine ligase (GCL) and glutathione synthetase (GS), regulate GSH metabolism by increasing glutathione peroxidase (GSH-Px) and glutathione reductase (GR) activities, and reduce levels of reactive oxygen species (ROS) and malondialdehyde (MDA). Furthermore, the antioxidative stress effect of the DH fractions was found to be positively correlated with the activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) protein and the presence of antioxidative chemical constituents. In conclusion, this study highlights the efficacy of both liquid-liquid extraction and macroporous resin purification techniques in the enrichment of bioactive compounds from natural food resources. The comprehensive analysis of chemical constituents and antioxidant effects of different polar fractions from Dendrobium fimbriatum Hook contributes to the understanding of its potential application in functional foods and nutraceuticals.


Antioxidants , Dendrobium , Antioxidants/pharmacology , Hydrogen Peroxide , Tandem Mass Spectrometry , Glutathione
8.
Steroids ; 199: 109290, 2023 11.
Article En | MEDLINE | ID: mdl-37549776

In this study, we synthesized androsta-4,14-diene-3,16-dione, 12ß-hydroxyandrosta-4,14-diene-3,16-dione, and other 3,16-androstenedione derivatives from commercially available dehydroepiandrosterone as a starting material in 9-13 steps with high yields. The bioactivity of the obtained compounds was evaluated. Compounds 14a and 23a were shown to have high antitumor activity against acute lymphoblastic leukemia cell lines Nalm-6 and BALL-1, respectively. Network pharmacology analysis showed that the anti-leukemia activity of compounds 14a and 23a might be related to the JAK2, ABL1 protein, and PI3K/Akt signaling pathways. The molecular docking of compounds 14a and 23a identified possible active sites, with the lowest docking scores for PTGS2 and MAPK14, respectively. In addition, the absorption, distribution, metabolism, and excretion prediction results revealed the drug-likeness of the two compounds. Therefore, compounds 14a and 23a should be considered anti-leukemia candidates in future studies.


Androstenedione , Phosphatidylinositol 3-Kinases , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction
9.
Molecules ; 28(14)2023 Jul 18.
Article En | MEDLINE | ID: mdl-37513352

Anneslea fragrans Wall., popularly known as "Pangpo tea", is an edible, medicinal, and ornamental plant of the Family Theaceae. The leaves of A. fragrans were historically applied for the treatment of liver and intestinal inflammatory diseases in China. This study aimed to explore the hepatoprotective agents from A. fragrans leaves through hepatoprotective and anti-inflammatory assessment. The phytochemical investigation of the leaves of A. fragrans resulted in the isolation and identification of a total of 18 chemical compounds, including triterpenoids, aliphatic alcohol, dihydrochalcones, chalcones, flavanols, phenolic glycoside, and lignans. Compounds 1-2, 4-6, 11-12, and 16-18 were identified from A. fragrans for the first time. Compounds 7 and 14 could significantly alleviate hepatocellular damage by decreasing the contents of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) and inhibit the hepatocellular apoptosis in the HepG2 cells induced by N-acetyl-p-aminophenol (APAP). In addition, compounds 7 and 14 inhibited reactive oxygen species (ROS) and malondialdehyde (MDA) contents and increased the catalase (CAT) superoxide dismutase (SOD), and glutathione (GSH) levels for suppressing APAP-induced oxidative stress. Additionally, compounds 7, 13, and 14 also had significant anti-inflammatory effects by inhibiting interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) productions on LPS-induced RAW246.7 cells.


Antioxidants , Chemical and Drug Induced Liver Injury , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Oxidative Stress , Liver , Protective Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism , Glutathione/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Aspartate Aminotransferases/metabolism , Alanine Transaminase/metabolism
10.
Water Res ; 242: 120292, 2023 Aug 15.
Article En | MEDLINE | ID: mdl-37413751

Legacy nitrogen (N) originating from net N inputs (NNI) may pose ongoing threats to riverine water quality worldwide and even cause serious time-lags between water quality restoration and NNI declines. A better understanding of legacy N effects on riverine N pollutions in different seasons is essential to improve riverine water quality. Here, we investigated contributions of legacy N on riverine dissolved inorganic N (DIN) changes in different seasons and quantified spatio-seasonal time-lags in the Songhuajiang River basin (SRB), a hotspot of NNI with four distinct seasons, by exploring long-term (1978-2020) NNI-DIN relationships. Results firstly showed a significant seasonal difference in NNI, with the highest value observed in spring (average, 2184.1 kg/km2), 1.2, 5.0, and 4.6 times higher than that in summer, autumn, and winter, respectively. Cumulative legacy N had dominated riverine DIN changes, with a relative contribution of approximately 64% in 2011-2020, causing time-lags of 11-29 years across the SRB. The longest seasonal lags existed in spring (average, 23 years) owing to greater impacts of legacy N to riverine DIN changes in this season. Mulch film application, soil organic matter accumulation, N inputs, and snow cover were identified as the key factors that strengthened seasonal time-lags by collaboratively enhancing legacy N retentions in soils. Furthermore, a machine learning-based model system suggested that timescales for water quality improvement (DIN, ≤1.5 mg/L) varied considerably (from 0 to >29 years, Improved N Management-Combined scenario) across the SRB, with greater lag effects contributing to slower recovery. These findings can provide a more comprehensive insight into sustainable basin N management in the future.


Nitrogen , Rivers , Nitrogen/analysis , Seasons , Water Quality , Quality Improvement , Environmental Monitoring , Soil
11.
Food Chem Toxicol ; 179: 113973, 2023 Sep.
Article En | MEDLINE | ID: mdl-37506865

Anneslea fragrans Wall. (AF) is an important medicinal and edible plant in China. The principal objectives of this study are to explore the hepatoprotective effect of ethanol-aqueous (AFE) and hot-water (AFW) extracts in vitro and in vivo. UPLC-ESI-MS/MS analysis showed that AFW and AFE are rich in dihydrochalcones. Both AFW and AFE significantly up-regulated the expressions of SOD, CAT and GSH, reduced the MDA content in acetaminophen (APAP)-induced HepG2 cells, and suppressed the expressions of NO, TNF-α, IL-1ß, and IL-6 in LPS-induced RAW246.7 cells. In APAP-induced mice, AFW and AFE administration significantly decreased the plasma levels of AST and ALT, and improved liver tissue damage, the collagen deposition and fibrosis formation. Moreover, AFW and AFE decreased the MDA and ROS accumulations via activating Nrf2 pathway to increase the hepatic GSH contents and activities of SOD, CAT, HO-1, and NQO-1, reduced the levels of NO, TNF-α, IL-1ß, and IL-6 by suppressing the JNK/p38/ERK/NF-κB pathways, and alleviated apoptosis via regulating Bcl-2, Bax, caspase-3/9 protein expressions. This study provides a new sight that AFW and AFE may have a potential natural resource for the treatment of liver injury.


Acetaminophen , Chemical and Drug Induced Liver Injury , Mice , Animals , Acetaminophen/metabolism , Tumor Necrosis Factor-alpha/metabolism , Ethanol/metabolism , Interleukin-6/metabolism , Tandem Mass Spectrometry , Plant Extracts/pharmacology , Liver , Superoxide Dismutase/metabolism , Water , Chemical and Drug Induced Liver Injury/metabolism , Oxidative Stress , NF-E2-Related Factor 2/metabolism
12.
Plant Foods Hum Nutr ; 78(2): 407-418, 2023 Jun.
Article En | MEDLINE | ID: mdl-37266882

Anneslea fragrans Wall., an edible and medicinal plant, is traditionally used to treat liver and gastrointestinal diseases. This paper aimed to investigate the influence of ultra-high pressure (UHP) pretreatment on the phenolics profiling, antioxidant, and cytoprotective activities of free (FP), esterified (EP), and bound (BP) phenolics from A. fragrans leaves. A total of 32 compounds were characterized and quantified. The davidigenin (44.46 and 113.37 mg/g extract) was the highest in A. fragrans leaves. The vitexin (9), afzelin (10), coreopsin (15), and davidigenin (28) were analyzed with MS2 fragment pathways. Results showed that UHP treated A. fragrans leaves had higher total phenolic (TPC) and total flavonoid (TFC) contents of FP, EP, and BP fractions than those in the raw leaves. Moreover, UHP pretreated A. fragrans leaves had higher scavenging activities on DPPH+• and ABTS+•, and inhibitory effects on the intracellular ROS generation in H2O2-induced HepG2 cells. UFP showed the highest inhibition of ROS production among the samples. Therefore, UHP pretreatment method might be used as an effective strategy for elevating the availabilities of A. fragrans leaves to develop functional foods.


Antioxidants , Hydrogen Peroxide , Antioxidants/analysis , Reactive Oxygen Species/metabolism , Plant Extracts/chemistry , Phenols/analysis , Plant Leaves/chemistry
13.
Phytomedicine ; 115: 154854, 2023 Jul.
Article En | MEDLINE | ID: mdl-37156058

BACKGROUND: Liver fibrosis is a crucial progress to deteriorate liver disease. E Se tea (ES) is an ethnic herbal tea in China that has various biological activities for human beings. However, the traditional application on the treatment of liver disease is not studied. PURPOSE: This study is firstly performed to explore the chemical constituents of ES extract together with its anti-hepatic fibrosis effect and potential mechanism on CCl4 treated mice. STUDY DESIGN AND METHODS: The chemical constituents of ethanol-aqueous extract from ES (ESE) were analyzed by UPLC-ESI-MS/MS. The anti-hepatic fibrosis effect of ESE was determined by measuring ALT and AST activities, antioxidative indexes, inflammatory cytokines and collagen protein levels on CCl4 treated mice. Moreover, H&E, Masson staining and immunohistochemical analysis were performed for evaluating the protective effect of ESE on histopathological changes of liver tissues. RESULTS: UHPLCHRESI-MS/MS analysis showed that the ESE was rich in flavonoids such as phlorizin, phloretin, quercetin and hyperoside. ESE could significantly reduce the plasma AST and ALT activities. The cytokines (IL-6, TNF-α, IL-1ß) expressions were inhibited after ESE administration via suppressing NF-κB pathway. In addition, ESE could decrease MDA accumulation for alleviating CCl4 induced liver oxidative stress via regulating Nrf2 pathway to promote the expressions of antioxidant enzymes (SOD, HO-1, CAT and NQO1). Moreover, ESE could inhibit the expressions of TGF-ß1, Smad2, α-SMA, and collagens Ⅰ and III proteins, thereby effectively alleviate the liver fibrosis. CONCLUSION: This study demonstrated that ESE could alleviate liver fibrosis through enhancing antioxidant and anti-inflammatory abilities by Nrf2/NF-κB pathway and reducing deposition of liver fibrosis via suppressing TGF-ß/Smad pathway.


NF-kappa B , Transforming Growth Factor beta1 , Rats , Humans , Mice , Animals , NF-kappa B/metabolism , Transforming Growth Factor beta1/metabolism , NF-E2-Related Factor 2/metabolism , Antioxidants/metabolism , Tandem Mass Spectrometry , Signal Transduction , Rats, Sprague-Dawley , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver , Cytokines/metabolism , Tea , Carbon Tetrachloride/toxicity
14.
Food Chem Toxicol ; 175: 113752, 2023 May.
Article En | MEDLINE | ID: mdl-37004906

Anneslea Fragrans Wall. (AF) is a medicinal and edible plant distributed in China. Its leaves and barks are generally used for the treatments of diarrhea, fever, and liver diseases. While its ethnopharmacological application against liver diseases has not been fully studied. This study was aimed to evaluate the hepatoprotective effect of ethanolic extract from A. fragrans (AFE) on CCl4 induced liver injury in mice. The results showed that AFE could effectively reduce plasma activities of ALT and AST, increase antioxidant enzymes activities (SOD and CAT) and GSH level, and decrease MDA content in CCl4 induced mice. AFE effectively decreased the expressions of inflammatory cytokines (IL-1ß, IL-6, TNF-α, COX-2 and iNOS), cell apoptosis-related proteins (Bax, caspase-3 and caspase-9) and increased Bcl-2 protein expression via inhibiting MAPK/ERK pathway. Additionally, TUNEL staining, Masson and Sirius red staining, immunohistochemical analyses revealed that AFE could inhibit the CCl4-induced hepatic fibrosis formation via reducing depositions of α-SMA, collagen I and collagen III proteins. Conclusively, the present study demonstrated that AFE had an hepatoprotective effect by suppressing MAPK/ERK pathway to inhibit oxidative stress, inflammatory response and apoptosis in CCl4-induced liver injury mice, suggesting that AFE might be served as a hepatoprotective ingredient in the prevention and treatment of liver injury.


Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Mice , Animals , Chemical and Drug Induced Liver Injury, Chronic/drug therapy , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Carbon Tetrachloride/toxicity , Carbon Tetrachloride/metabolism , Liver , Oxidative Stress , Antioxidants/pharmacology , Apoptosis , Ethanol/metabolism , Chemical and Drug Induced Liver Injury/metabolism
15.
Phytochemistry ; 209: 113639, 2023 May.
Article En | MEDLINE | ID: mdl-36889562

Gardneria distincta P. T. Li is traditionally applied as a herbal medicine for treatment various ailments, and is mainly distributed in Southwestern China. Under the guided separation of MS/MS-based molecular networking, eight undescribed oxindole alkaloids, gardistines A-H, as well as 17 known alkaloids were discovered from the whole parts of Gardneria distincta. Structural elucidation of these undescribed alkaloids was performed by various spectroscopic methods. Gardistine A is a rare oxindole gardneria alkaloid bearing an ester carbonyl group attached to C-18, which is the second reported alkaloid of oxindole gardneria-type. All of the identified monoterpene indole alkaloids were investigated for their anti-inflammatory activity in LPS-induced RAW 264.7 cells. Gardistines A-B and akuammidine demonstrated significant inhibitory effects on the expressions of nitric oxide, tumor necrosis factor alpha, and interleukin-6 at 20 µM.


Alkaloids , Tandem Mass Spectrometry , Oxindoles , Alkaloids/pharmacology , Indole Alkaloids/chemistry , Anti-Inflammatory Agents/pharmacology , Molecular Structure
16.
Foods ; 12(3)2023 Feb 01.
Article En | MEDLINE | ID: mdl-36766156

Herbal tea has numerous biological activities and exhibits broad benefits for human health. In China, the flower buds of Lyonia ovalifolia are traditionally processed as herbal tea, namely White Que Zui tea (WQT). This study was aimed to evaluate the effect of ultra-high hydrostatic pressure (UHHP) pretreatment on the chemical constituents and biological activities of free, esterified, and insoluble-bound phenolic fractions from WQT. A total of 327 chemical constituents were identified by a quasi-targeted metabolomics analysis. UHHP pretreatment extremely inhibited reactive oxygen species (ROS) production and cell apoptosis in H2O2-induced HepG2 cells, and it increased the activities of intracellular antioxidant enzymes (SOD and CAT) and GSH content in different phenolic fractions from WQT. In addition, after UHHP pretreatment, the anti-inflammatory effects of different phenolic fractions from WQT were improved by inhibiting the production of nitric oxide (NO) and pro-inflammatory cytokines (TNF-α, IL-6, and IL-1ß) in LPS-induced RAW264.7 cells. Thus, the UHHP method might be a potential pretreatment strategy for improving the bioavailability of phytochemicals from natural plants.

17.
Food Chem ; 409: 135271, 2023 May 30.
Article En | MEDLINE | ID: mdl-36587513

This study aims to explore whether ultra-high pressure (UHP) pre-treatment strengthened the bioaccessibility and bioactivities of the free (QF), esterified (QE) and insoluble-bound phenolics (QIB) from Que Zui tea (QT). The results revealed that the extraction yields, the total phenolic (TPC) and total flavonoid contents (TFC) of three phenolic fractions from QT were markedly increased after ultra-high pressure (UHP) processing (p < 0.05). A total of 19 and 20 compounds were characterized and quantified in non- and UHP-treated QT, respectively, including the content of 6'-O-caffeoylarbutin (11775.68 and 13248.87 µg/g of dry extract) was highest in QF, the content of caffeic acid was highest in QE (2131.58 and 7362.99 µg/g of dry extract) and QIB (9151.89 and 10930.82 µg/g of dry extract). QF, QE and QIB from QT after UHP processing had better antioxidant, ROS scavenging, and anti-apoptosis effects. The possible mechanism of cytoprotective effect was related to Keap1-Nrf2 pathway.


Antioxidants , NF-E2-Related Factor 2 , Antioxidants/pharmacology , Antioxidants/analysis , Kelch-Like ECH-Associated Protein 1 , Phenols/pharmacology , Phenols/analysis , Plant Extracts/pharmacology , Tea , Chromatography, High Pressure Liquid/methods
18.
Sensors (Basel) ; 22(23)2022 Nov 22.
Article En | MEDLINE | ID: mdl-36501738

Ultrasound is an essential tool for guidance of many minimally-invasive surgical and interventional procedures, where accurate placement of the interventional device is critical to avoid adverse events. Needle insertion procedures for anaesthesia, fetal medicine and tumour biopsy are commonly ultrasound-guided, and misplacement of the needle may lead to complications such as nerve damage, organ injury or pregnancy loss. Clear visibility of the needle tip is therefore critical, but visibility is often precluded by tissue heterogeneities or specular reflections from the needle shaft. This paper presents the in vitro and ex vivo accuracy of a new, real-time, ultrasound needle tip tracking system for guidance of fetal interventions. A fibre-optic, Fabry-Pérot interferometer hydrophone is integrated into an intraoperative needle and used to localise the needle tip within a handheld ultrasound field. While previous, related work has been based on research ultrasound systems with bespoke transmission sequences, the new system-developed under the ISO 13485 Medical Devices quality standard-operates as an adjunct to a commercial ultrasound imaging system and therefore provides the image quality expected in the clinic, superimposing a cross-hair onto the ultrasound image at the needle tip position. Tracking accuracy was determined by translating the needle tip to 356 known positions in the ultrasound field of view in a tank of water, and by comparison to manual labelling of the the position of the needle in B-mode US images during an insertion into an ex vivo phantom. In water, the mean distance between tracked and true positions was 0.7 ± 0.4 mm with a mean repeatability of 0.3 ± 0.2 mm. In the tissue phantom, the mean distance between tracked and labelled positions was 1.1 ± 0.7 mm. Tracking performance was found to be independent of needle angle. The study demonstrates the performance and clinical compatibility of ultrasound needle tracking, an essential step towards a first-in-human study.


Fiber Optic Technology , Needles , Pregnancy , Female , Humans , Ultrasonography , Phantoms, Imaging , Water , Ultrasonography, Interventional/methods
19.
Biomed Opt Express ; 13(8): 4414-4428, 2022 Aug 01.
Article En | MEDLINE | ID: mdl-36032566

Photoacoustic (PA) endoscopy has shown significant potential for clinical diagnosis and surgical guidance. Multimode fibres (MMFs) are becoming increasingly attractive for the development of miniature endoscopy probes owing to their ultrathin size, low cost and diffraction-limited spatial resolution enabled by wavefront shaping. However, current MMF-based PA endomicroscopy probes are either limited by a bulky ultrasound detector or a low imaging speed that hindered their usability. In this work, we report the development of a highly miniaturised and high-speed PA endomicroscopy probe that is integrated within the cannula of a 20 gauge medical needle. This probe comprises a MMF for delivering the PA excitation light and a single-mode optical fibre with a plano-concave microresonator for ultrasound detection. Wavefront shaping with a digital micromirror device enabled rapid raster-scanning of a focused light spot at the distal end of the MMF for tissue interrogation. High-resolution PA imaging of mouse red blood cells covering an area 100 µm in diameter was achieved with the needle probe at ∼3 frames per second. Mosaicing imaging was performed after fibre characterisation by translating the needle probe to enlarge the field-of-view in real-time. The developed ultrathin PA endomicroscopy probe is promising for guiding minimally invasive surgery by providing functional, molecular and microstructural information of tissue in real-time.

20.
Molecules ; 27(11)2022 May 26.
Article En | MEDLINE | ID: mdl-35684371

The bud of Vaccinium dunalianum Wight has been traditionally consumed as health herbal tea by "Yi" people in Yunnan Province, China, which was locally named "Que Zui tea". This paper studied the chemical constituents of five fractions from Vaccinium dunalianum, and their enzyme inhibitory effects of α-glucosidase and pancreatic lipase, antioxidant activity, and cytoprotective effects on H2O2-induced oxidative damage in HepG2 cells. The methanol extract of V. dunalianum was successively partitioned with petroleum ether (PF), chloroform (CF), ethyl acetate (EF), n-butanol (BF), and aqueous (WF) to obtain five fractions. The chemical profiling of the five fractions was analyzed by ultra-high-performance liquid chromatography coupled with a tandem mass spectrometry (UHPLC-MS/MS), and 18 compounds were tentatively identified. Compared to PF, CF, BF and WF, the EF revealed the highest total phenols (TPC) and total flavonoids (TFC), and displayed the strongest enzyme inhibition ability (α-glucosidase and pancreatic lipase) and antioxidant capacity (DPPH, ABTS and FRAP). Furthermore, these five fractions, especially EF, could effectively inhibit reactive oxygen species (ROS) production and cell apoptosis on H2O2-induced oxidative damage protection in HepG2 cells. This inhibitory effect might be caused by the up-regulation of intracellular antioxidant enzyme activity (CAT, SOD, and GSH). The flavonoids and phenolic acids of V. dunalianum might be the bioactive substances responsible for enzyme inhibitory, antioxidant, and cytoprotective activities.


Antioxidants , Vaccinium , Antioxidants/chemistry , China , Flavonoids/chemistry , Humans , Hydrogen Peroxide/analysis , Lipase , Phenols/analysis , Phenols/pharmacology , Plant Extracts/chemistry , Tandem Mass Spectrometry , alpha-Glucosidases
...