Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 126
1.
Am J Pathol ; 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38849030

Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease characterized by pulmonary fibroblast overactivation, resulting in the accumulation of abnormal extracellular matrix and lung parenchymal damage. Although the pathogenesis of IPF remains unclear, aging was proposed as the most prominent nongenetic risk factor. Previous studies have indicated that propionate metabolism undergoes reprogramming in the aging population, leading to the accumulation of the by-product methylmalonic acid (MMA). This study aims to explore alterations in propionate metabolism in IPF and the impact of the by-product MMA on pulmonary fibrosis. The present study revealed alterations in the expression of enzymes involved in propionate metabolism within IPF lung tissues, characterized by an increase in propionyl-CoA carboxylase and methylmalonyl-CoA epimerase expression, and a decrease in methylmalonyl-CoA mutase expression. Knockdown of methylmalonyl-CoA mutase, the key enzyme in propionate metabolism, in A549 cells induced a profibrotic phenotype and activated co-cultured fibroblasts. MMA exacerbated bleomycin-induced mouse lung fibrosis and induced a profibrotic phenotype in both epithelial cells and fibroblasts through activation of the canonical transforming growth factor-ß/Smad pathway. Overall, our findings unveil an alteration of propionate metabolism in IPF, leading to MMA accumulation, thus exacerbating lung fibrosis through promoting profibrotic phenotypic transitions via the canonical transforming growth factor-ß/Smad signaling pathway.

2.
Cell Biosci ; 14(1): 42, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38556890

BACKGROUND: Repeated neonatal sevoflurane exposures led to neurocognitive disorders in young mice. We aimed to assess the role of microglia and complement C1q in sevoflurane-induced neurotoxicity and explore the underlying mechanisms. METHODS: Neonatal mice were treated with sevoflurane on postnatal days 6, 8, and 10, and the Morris water maze was performed to assess cognitive functions. For mechanistic explorations, mice were treated with minocycline, C1q-antibody ANX005, and sialidase-inhibitor N-acetyl-2,3-dehydro-2-deoxyneuraminic acid (NADNA) before sevoflurane exposures. Western blotting, RT-qPCR, Golgi staining, 3D reconstruction and engulfment analysis, immunofluorescence, and microglial morphology analysis were performed. In vitro experiments were conducted in microglial cell line BV2 cells. RESULTS: Repeated neonatal sevoflurane exposures resulted in deficiencies in learning and cognition of young mice, accompanied by microglial activation and synapse loss. Sevoflurane enhanced microglia-mediated synapse elimination through C1q binding to synapses. Inhibition of microglial activation and phagocytosis with minocycline significantly reduced the loss of synapses. We further revealed the involvement of neuronal sialic acids in this process. The enhanced activity of sialidase by sevoflurane led to the loss of sialic acids, which facilitated C1q binding to synapses. Inhibition of C1q with ANX005 or inhibition of sialidase with NADNA significantly rescued microglia-mediated synapse loss and improved neurocognitive function. Sevoflurane enhanced the engulfment of BV2 cells, which was reversed by ANX005. CONCLUSIONS: Our findings demonstrated that C1q-mediated microglial synaptic elimination by enhancing desialylation contributed to sevoflurane-induced developmental neurotoxicity. Inhibition of C1q or sialidase may be a potential therapeutic strategy for this neurotoxicity.

3.
J Neurochem ; 168(6): 1080-1096, 2024 Jun.
Article En | MEDLINE | ID: mdl-38317263

Sevoflurane, the predominant pediatric anesthetic, has been linked to neurotoxicity in young mice, although the underlying mechanisms remain unclear. This study focuses on investigating the impact of neonatal sevoflurane exposure on cell-type-specific alterations in the prefrontal cortex (PFC) of young mice. Neonatal mice were subjected to either control treatment (60% oxygen balanced with nitrogen) or sevoflurane anesthesia (3% sevoflurane in 60% oxygen balanced with nitrogen) for 2 hours on postnatal days (PNDs) 6, 8, and 10. Behavioral tests and single-nucleus RNA sequencing (snRNA-seq) of the PFC were conducted from PNDs 31 to 37. Mechanistic exploration included clustering analysis, identification of differentially expressed genes (DEGs), enrichment analyses, single-cell trajectory analysis, and genome-wide association studies (GWAS). Sevoflurane anesthesia resulted in sociability and cognition impairments in mice. Novel specific marker genes identified 8 distinct cell types in the PFC. Most DEGs between the control and sevoflurane groups were unique to specific cell types. Re-defining 15 glutamatergic neuron subclusters based on layer identity revealed their altered expression profiles. Notably, sevoflurane disrupted the trajectory from oligodendrocyte precursor cells (OPCs) to oligodendrocytes (OLs). Validation of disease-relevant candidate genes across the main cell types demonstrated their association with social dysfunction and working memory impairment. Behavioral results and snRNA-seq collectively elucidated the cellular atlas in the PFC of young male mice, providing a foundation for further mechanistic studies on developmental neurotoxicity induced by anesthesia.


Anesthetics, Inhalation , Prefrontal Cortex , Sevoflurane , Animals , Sevoflurane/toxicity , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Mice , Anesthetics, Inhalation/toxicity , Male , Animals, Newborn , Female , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , Genome-Wide Association Study
4.
Anesth Analg ; 138(1): 161-170, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37874773

BACKGROUND: Postoperative delirium (POD) is common among older surgical patients and may be affected by dexmedetomidine and depth of anesthesia. We designed this pilot study to assess the feasibility of comparing dexmedetomidine with normal saline during light versus deep anesthesia on POD in older patients undergoing major noncardiac surgery. METHODS: In this pilot randomized factorial study, 80 patients aged 60 years or older undergoing major noncardiac surgery were randomized (1:1:1:1) to receive dexmedetomidine infusion 0.5 µg/kg/h or normal saline placebo during light (bispectral index [BIS] target 55) or deep (BIS target 40) anesthesia. Feasibility end points included consent rate and dropout rate, timely enrollment, blinded study drug administration throughout surgery, no inadvertent unmasking, achieving BIS target throughout >70% of surgery duration, and the process of twice-daily POD screening. In addition, we estimated the POD incidences in the 2 control groups (placebo and deep anesthesia) and treatment effects of dexmedetomidine and light anesthesia. RESULTS: Between November 1, 2021, and June 30, 2022, 78 patients completed the trial (mean [standard deviation, SD] age, 69.6 [4.6] years; 48 male patients [62%]; dexmedetomidine-deep, n = 19; dexmedetomidine-light, n = 20; placebo-deep, n = 19; placebo-light, n = 20). This study had a high consent rate (86%) and a low dropout rate (2.5%). Average recruitment was 5 patients at each center per month. Dexmedetomidine and normal saline were administered in a blinded fashion in all patients. Unmasking did not occur in either group. Approximately 99% of patients received the scheduled study drug infusion throughout the surgery. Approximately 81% of patients achieved the BIS targets throughout >70% of the surgery duration. The scheduled twice-daily POD screening was completed without exception. Overall, 10 of the 78 patients (13%; 95% confidence interval [CI], 7%-22%) developed POD. For the 2 reference groups, POD was observed in 7 of the 39 patients (17.9%; 95% CI, 9%-32.7%) in the placebo group and 7 of the 38 patients (18.4%; 95% CI, 9.2%-33.4%) in the deep anesthesia group. Regarding the treatment effects on POD, the estimated between-group difference was -10% (95% CI, -28% to 7%) for dexmedetomidine versus placebo, and -11% (95% CI, -28% to 6%) for light versus deep anesthesia. CONCLUSIONS: The findings of this pilot study demonstrate the feasibility of assessing dexmedetomidine versus placebo during light versus deep anesthesia on POD among older patients undergoing major noncardiac surgery, and justify a multicenter randomized factorial trial.


Delirium , Dexmedetomidine , Emergence Delirium , Humans , Male , Aged , Emergence Delirium/etiology , Pilot Projects , Saline Solution , Delirium/diagnosis , Delirium/etiology , Delirium/prevention & control , Postoperative Complications/etiology , Anesthesia, General/adverse effects , Double-Blind Method
5.
Adv Sci (Weinh) ; 11(10): e2305989, 2024 Mar.
Article En | MEDLINE | ID: mdl-38145349

Lipid metabolism has been considered as a potential therapeutic target in sevoflurane-induced neurotoxicity that can potentially affect the learning and memory function in the developmental brain. Recently, triggering receptor expressed on myeloid cells 2 (TREM2) is identified as a crucial step in regulating lipid metabolism and associated with the pathogenesis of neurodegenerative diseases. Herein, it is reported that quercetin modified Cu2- x Se (abbreviated as CSPQ) nanoparticles can ameliorate sevoflurane-induced neurotoxicity by tuning the microglial lipid metabolism and promoting microglial M2-like polarization via TREM2 signaling pathway, in which the apolipoprotein E (ApoE), and adenosine triphosphate-binding cassette transporters (ABCA1 and ABCG1) levels are upregulated. Furthermore, the protective effects of CSPQ nanoparticles against sevoflurane-induced neurotoxicity via TREM2 are further demonstrated by the small interfering RNA (siRNA)-TREM2 transfected BV2 cells, which are obviously not influenced by CSPQ nanoparticles. The cell membrane coated CSPQ (referred as CSPQ@CM) nanoparticles can significantly reduce sevoflurane-induced learning and memory deficits, improve lipid metabolism dysfunction, and promote the remyelination in the hippocampus of mice. The study shows great potential of targeting microglial lipid metabolism in promoting remyelination of neurons for treatment of neurotoxicity and neurodegenerative diseases.


Microglia , Neurodegenerative Diseases , Mice , Animals , Sevoflurane/metabolism , Sevoflurane/pharmacology , Microglia/metabolism , Lipid Metabolism , Biomimetics , Signal Transduction , Neurodegenerative Diseases/metabolism
6.
Behav Neurol ; 2023: 5617575, 2023.
Article En | MEDLINE | ID: mdl-38046475

Aim: To understand the degree of oncology patients' awareness of drug clinical trials and oncology patients' willingness to participate in drug clinical trials and the factors influencing them. Methods: The differences in the relevant variables of patients' willingness to accept clinical trials were analyzed, and a descriptive analysis was done for the measurement data (mean and standard deviation). Pearson's correlation coefficient analysis was used to examine the correlation between willingness and the demographic variables. Stepwise regression analysis was used to explore the influencing factors of patients' willingness to accept clinical trials. Results: There were no statistical differences in age, gender, education level, marital status, place of residence, monthly income, medical payment method, and treatment time (P > 0.05). Patients' willingness to accept drug clinical trials differed in their cognitive degree of clinical drug trials (P = 0.002). Patients' willingness to accept drug clinical trials differed in their experience in clinical trials (P < 0.001). The correlation difference was statistically significant. The willingness to accept drug clinical trials was negatively correlated with treatment time (R = -0.16, P < 0.05) and positively correlated with awareness of clinical trials and whether they had been subjects (R = 0.16 and 0.43, P < 0.05). Multiple regression analysis showed that patients' willingness was directly influenced by age, treatment time, and whether they had been subjects (F = 21.315, P < 0.001). Conclusion: Age, treatment time, and whether they had been subjects were the direct influencing factors of patients' willingness. This study pointed out that hospitals should do a good job in the publicity of clinical trials of new drugs, expand publicity channels, increase publicity efforts, improve the awareness of clinical trials of the masses, and promote the enthusiasm of the masses to participate in clinical trials of drugs.


Clinical Trials as Topic , Neoplasms , Patient Participation , Humans , Neoplasms/drug therapy , Neoplasms/psychology
7.
Am J Respir Cell Mol Biol ; 69(4): 456-469, 2023 10.
Article En | MEDLINE | ID: mdl-37402274

Idiopathic pulmonary fibrosis (IPF) is a progressive fatal interstitial lung disease without an effective cure. Herein, we explore the role of 3,5,3'-triiodothyronine (T3) administration on lung alveolar regeneration and fibrosis at the single-cell level. T3 supplementation significantly altered the gene expression in fibrotic lung tissues. Immune cells were rapidly recruited into the lung after the injury; there were much more M2 macrophages than M1 macrophages in the lungs of bleomycin-treated mice; and M1 macrophages increased slightly, whereas M2 macrophages were significantly reduced after T3 treatment. T3 enhanced the resolution of pulmonary fibrosis by promoting the differentiation of Krt8+ transitional alveolar type II epithelial cells into alveolar type I epithelial cells and inhibiting fibroblast activation and extracellular matrix production potentially by regulation of Nr2f2. In addition, T3 regulated the crosstalk of macrophages with fibroblasts, and the Pros1-Axl signaling axis significantly facilitated the attenuation of fibrosis. The findings demonstrate that administration of a thyroid hormone promotes alveolar regeneration and resolves fibrosis mainly by regulation of the cellular state and cell-cell communication of alveolar epithelial cells, macrophages, and fibroblasts in mouse lungs in comprehensive ways.


Idiopathic Pulmonary Fibrosis , Mice , Animals , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Lung/pathology , Fibrosis , Bleomycin/pharmacology , Fibroblasts/metabolism , Thyroid Hormones/metabolism , Sequence Analysis, RNA
8.
J Cell Commun Signal ; 17(4): 1435-1447, 2023 Dec.
Article En | MEDLINE | ID: mdl-37378811

G protein-coupled receptors (GPCRs) play important roles in tumorigenesis and the development of hepatocellular carcinoma (HCC). GPR50 is an orphan GPCR. Previous studies have indicated that GPR50 could protect against breast cancer development and decrease tumor growth in a xenograft mouse model. However, its role in HCC remains indistinct. To detect the role and the regulation mechanism of GPR50 in HCC, GPR50 expression was analyzed in HCC patients (gene expression omnibus database (GEO) (GSE45436)) and detected in HCC cell line CBRH-7919, and the results showed that GPR50 was significantly up-regulated in HCC patients and CBRH-7919 cell line compared to the corresponding normal control. Gpr50 cDNA was transfected into HCC cell line CBRH-7919, and we found that Gpr50 promoted the proliferation, migration, and autophagy of CBRH-7919. The regulation mechanism of GPR50 in HCC was detected by isobaric tags for relative and absolute quantification (iTRAQ) analysis, and we found that GPR50 promoted HCC was closely related to CCT6A and PGK1. Taken together, GPR50 may promote HCC progression via CCT6A-induced proliferation and PGK1-induced migration and autophagy, and GPR50 could be an important target for HCC.

9.
Biomater Adv ; 152: 213501, 2023 Sep.
Article En | MEDLINE | ID: mdl-37321007

In recent years, hydrogels have been widely used in the biomedical field as materials with excellent bionic structures and biological properties. Among them, the excellent comprehensive properties of natural polymer hydrogels represented by sodium alginate have attracted the great attention of researchers. At the same time, by physically blending sodium alginate with other materials, the problems of poor cell adhesion and mechanical properties of sodium alginate hydrogels were directly improved without chemical modification of sodium alginate. The composite blending of multiple materials can also improve the functionality of sodium alginate hydrogels, and the prepared composite hydrogel also has a larger application field. In addition, based on the adjustable viscosity of sodium alginate-based hydrogels, sodium alginate-based hydrogels can be loaded with cells to prepare biological ink, and the scaffold can be printed out by 3D printing technology for the repair of bone defects. This paper first summarizes the improvement of the properties of sodium alginate and other materials after physical blending. Then, it summarizes the application progress of sodium alginate-based hydrogel scaffolds for bone tissue repair based on 3D printing technology in recent years. Moreover, we provide relevant opinions and comments to provide a theoretical basis for follow-up research.


Hydrogels , Tissue Scaffolds , Tissue Scaffolds/chemistry , Alginates , Printing, Three-Dimensional , Bone and Bones/surgery
10.
Int J Mol Sci ; 24(10)2023 May 14.
Article En | MEDLINE | ID: mdl-37240093

The pathological features of pulmonary fibrosis (PF) are the abnormal activation and proliferation of myofibroblasts and the extraordinary deposition of the extracellular matrix (ECM). However, the pathogenesis of PF is still indistinct. In recent years, many researchers have realized that endothelial cells had a crucial role in the development of PF. Studies have demonstrated that about 16% of the fibroblasts in the lung tissue of fibrotic mice were derived from endothelial cells. Endothelial cells transdifferentiated into mesenchymal cells via the endothelial-mesenchymal transition (E(nd)MT), leading to the excessive proliferation of endothelial-derived mesenchymal cells and the accumulation of fibroblasts and ECM. This suggested that endothelial cells, a significant component of the vascular barrier, played an essential role in PF. Herein, this review discusses E(nd)MT and its contribution to the activation of other cells in PF, which could provide new ideas for further understanding the source and activation mechanism of fibroblasts and the pathogenesis of PF.


Pulmonary Fibrosis , Mice , Animals , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/pathology , Endothelial Cells/pathology , Fibrosis , Fibroblasts/pathology , Myofibroblasts/pathology , Risk Factors
11.
Cell Commun Signal ; 21(1): 56, 2023 03 13.
Article En | MEDLINE | ID: mdl-36915092

BACKGROUND: Matrix metalloproteinases (MMPs) play important roles in remodeling the extracellular matrix and in the pathogenesis of idiopathic pulmonary fibrosis (IPF). MMP19, which is an MMP, was significantly upregulated in hyperplastic alveolar epithelial cells in IPF lung tissues and promoted epithelial-mesenchymal transition (EMT). Recent studies have demonstrated that endothelial-to-mesenchymal transition (E(nd)MT) contributes to pulmonary fibrosis. However, the role of MMP19 in pulmonary vascular injury and repair and E(nd)MT remains unclear. METHODS: To determine the role of MMP19 in E(nd)MT and pulmonary fibrosis. MMP19 expressions were determined in the lung endothelial cells of IPF patients and bleomycin (BLM)-induced mice. The roles of MMP19 in E(nd)MT and endothelial barrier permeability were studied in the MMP19 cDNA-transfected primary human pulmonary microvascular endothelial cells (HPMECs) and MMP19 adenoassociated virus (MMP19-AAV)-infected mice. The regulatory mechanism of MMP19 in pulmonary fibrosis was elucidated by blocking its interacting proteins SDF1 and ET1 with AMD3100 and Bosentan, respectively. RESULTS: In this study, we found that MMP19 expression was significantly increased in the lung endothelial cells of IPF patients and BLM-induced mice compared to the control groups. MMP19 promoted E(nd)MT and the migration and permeability of HPMECs in vitro, stimulated monocyte infiltration into the alveolus, and aggravated BLM-induced pulmonary fibrosis in vivo. SDF1 and Endothelin-1 (ET1) were physically associated with MMP19 in HPMECs and colocalized with MMP19 in endothelial cells in IPF patient lung tissues. AMD3100 and bosentan alleviated the fibrosis induced by MMP19 in the BLM mouse model. CONCLUSION: MMP19 promoted E(nd)MT by interacting with ET1 and stimulated monocyte infiltration into lung tissues via the SDF1/CXCR4 axis, thus aggravating BLM-induced pulmonary fibrosis. Vascular integrity regulated by MMP19 could be a promising therapeutic target for suppressing pulmonary fibrosis. Video abstract.


Endothelial Cells , Idiopathic Pulmonary Fibrosis , Matrix Metalloproteinases, Secreted , Animals , Humans , Mice , Bleomycin/adverse effects , Bosentan/metabolism , Bosentan/therapeutic use , Endothelial Cells/pathology , Epithelial-Mesenchymal Transition , Idiopathic Pulmonary Fibrosis/pathology , Lung/metabolism , Monocytes , Matrix Metalloproteinases, Secreted/metabolism
12.
Anesthesiology ; 138(5): 477-495, 2023 05 01.
Article En | MEDLINE | ID: mdl-36752736

BACKGROUND: Multiple neonatal exposures to sevoflurane induce neurocognitive dysfunctions in rodents. The lack of cell type-specific information after sevoflurane exposure limits the mechanistic understanding of these effects. In this study, the authors tested the hypothesis that sevoflurane exposures alter the atlas of hippocampal cell clusters and have neuronal and nonneuronal cell type-specific effects in mice of both sexes. METHODS: Neonatal mice were exposed to 3% sevoflurane for 2 h at postnatal days 6, 8, and 10 and analyzed for the exposure effects at postnatal day 37. Single-nucleus RNA sequencing was performed in the hippocampus followed by in situ hybridization to validate the results of RNA sequencing. The Morris Water Maze test was performed to test neurocognitive function. RESULTS: The authors found sex-specific distribution of hippocampal cell types in control mice alongside cell type- and sex-specific effects of sevoflurane exposure on distinct hippocampal cell populations. There were important changes in male but not in female mice after sevoflurane exposure regarding the proportions of cornu ammonis 1 neurons (control vs. sevoflurane, males: 79.9% vs. 32.3%; females: 27.3% vs. 24.3%), dentate gyrus (males: 4.2% vs. 23.4%; females: 36.2% vs. 35.8%), and oligodendrocytes (males: 0.6% vs. 6.9%; females: 5.9% vs. 7.8%). In male but not in female mice, sevoflurane altered the number of significantly enriched ligand-receptor pairs in the cornu ammonis 1, cornu ammonis 3, and dente gyrus trisynaptic circuit (control vs. sevoflurane, cornu ammonis 1-cornu ammonis 3: 18 vs. 42 in males and 15 vs. 21 in females; cornu ammonis 1-dentate gyrus: 21 vs. 35 in males and 12 vs. 20 in females; cornu ammonis 3-dentate gyrus: 25 vs. 45 in males and 17 vs. 20 in females), interfered with dentate gyrus granule cell neurogenesis, hampered microglia differentiation, and decreased cornu ammonis 1 pyramidal cell diversity. Oligodendrocyte differentiation was specifically altered in females with increased expressions of Mbp and Mag. In situ hybridization validated the increased expression of common differentially expressed genes. CONCLUSIONS: This single-nucleus RNA sequencing study reveals the hippocampal atlas of mice, providing a comprehensive resource for the neuronal and nonneuronal cell type- and sex-specific effects of sevoflurane during development.


Dentate Gyrus , Hippocampus , Male , Female , Animals , Mice , Sevoflurane/pharmacology , Dentate Gyrus/metabolism , Neurons , Pyramidal Cells
13.
Anim Biotechnol ; 34(3): 633-644, 2023 Jun.
Article En | MEDLINE | ID: mdl-34693889

The site of fat deposition plays an important role in meat quality and body health. Biologically, the perirenal visceral fat (PF) and back subcutaneous fat (BF) are distinct. Angus and Simmental cattle (Bos taurus) were used as models. HE staining, triglyceride assay kit and RNA-seq were used to analyze the differences in tissue morphology and lipid accumulation, co-genes, and differentially expressed genes (DEGs) between the two tissues. According to the findings, BF has a smaller cell area and greater lipid deposition ability than PF. RNA-seq generated approximately 10.99 Gb of data in each library, and 23,472 genes were identified. The genes FABP4, ADIRF, and SCD that are related to adipose deposition were highly expressed in four tissues. There were 1678 DEGs and 1955 DEGs between BF and PF in Angus and Simmental cattle respectively. Gene Ontology function analysis identified several DEGs involved in metabolism. KEGG pathway analysis showed that four pathways related to fat metabolism were enriched. In the BF, seven genes (COL1A1, COL1A2, COL3A1, COL2A1, RXRA, C1QTNF7, and MOGAT2) were up-regulated. Five genes (ADRB3, ABHD5, CPT1B, CD36, LPIN1) were down-regulated. This study identified candidate genes that led to differences in fat metabolism, which could be useful in cattle breeding.


Adipose Tissue , Subcutaneous Fat , Cattle/genetics , Animals , RNA-Seq , Adipose Tissue/metabolism , Lipid Metabolism/genetics , Lipids , Gene Expression Profiling
14.
Int J Mol Sci ; 23(24)2022 Dec 11.
Article En | MEDLINE | ID: mdl-36555349

Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease characterized by fibroblast activation, excessive deposition of extracellular matrix, and progressive scarring; the pathogenesis remains elusive. The present study explored the role of Tribbles pseudokinase 3 (TRIB3), a well-known stress and metabolic sensor, in IPF. TRIB3 is down-regulated in the lungs of IPF patients in comparison to control subjects. Deficiency of TRIB3 markedly inhibited A549 epithelial cells' proliferation and migration, significantly reducing wound healing. Conversely, overexpression of TRIB3 promoted A549 cell proliferation and transmigration while it inhibited its apoptosis. Meanwhile, overexpressed TRIB3 inhibited fibroblast activation and decreased ECM synthesis and deposition in MRC5 cells. TRIB3 attenuated pulmonary fibrosis by negative regulation of ATF4, while TRIB3 expression markedly inhibited ATF4 promoter-driven transcription activity and down-regulated ATF4 expression. A co-culture system showed that TRIB3 is important to maintain the normal epithelial-mesenchymal crosstalk and regulate fibroblast activation. Taken together, our data suggested that an axis of TRIB3-ATF4 is a key mediator in IPF which might be a potential target for fibroproliferative lung disease treatment.


Idiopathic Pulmonary Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Fibrosis , Lung/pathology , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Repressor Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Cell Cycle Proteins/metabolism , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism
15.
Int J Mol Sci ; 23(22)2022 Nov 15.
Article En | MEDLINE | ID: mdl-36430565

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fatal interstitial lung disease with unknown etiology. Despite substantial progress in understanding the pathogenesis of pulmonary fibrosis and drug development, there is still no cure for this devastating disease. Fenbendazole (FBZ) is a benzimidazole compound that is widely used as an anthelmintic agent and recent studies have expanded the scope of its pharmacological effects and application prospect. This study demonstrated that FBZ treatment blunted bleomycin-induced lung fibrosis in mice. In vitro studies showed that FBZ inhibited the proliferation and migration of human embryo lung fibroblasts. Further studies showed that FBZ significantly inhibited glucose consumption, moderated glycolytic metabolism in fibroblasts, thus activated adenosine monophosphate-activated protein kinase (AMPK), and reduced the activation of the mammalian target of rapamycin (mTOR) pathway, thereby inhibiting transforming growth factor-ß (TGF-ß1)-induced fibroblast-to-myofibroblast differentiation and collagen synthesis. In summary, our data suggested that FBZ has potential as a novel treatment for pulmonary fibrosis.


Bleomycin , Idiopathic Pulmonary Fibrosis , Humans , Mice , Animals , Bleomycin/adverse effects , Fenbendazole , Myofibroblasts , Fibroblasts , Mammals
16.
Can Respir J ; 2022: 9663354, 2022.
Article En | MEDLINE | ID: mdl-36247080

Idiopathic pulmonary fibrosis (IPF) is a chronic, irreversible, and progressive interstitial lung disease characterized by recurrent alveolar epithelial cell injury, fibroblast hyperproliferation, and cumulative deposition of extracellular matrix leading to alveolar destruction in the lungs. Mitotic arrest deficient 2 like 1 (MAD2L1) is a component of the mitotic spindle assembly checkpoint that prevents the onset of anaphase until all chromosomes are properly aligned at metaphase and is a potential therapeutic target in cancers. However, the role of MAD2L1 in pulmonary fibrosis has not been explored. We analyzed the expression of MAD2L1 in lung tissues from control subjects, IPF patients, and mice with bleomycin-induced fibrosis via IHC, qRT-PCR, and Western blot analysis. We examined the roles of MAD2L1 in ROS production, mitochondrial function, cell senescence, and the establishment of a profibrotic microenvironment. We found that MAD2L1 was highly upregulated in alveolar epithelial cells in fibrotic lung tissues from both patients with IPF and mice with bleomycin-induced fibrosis. Loss of MAD2L1 expression or activity led to decreases of cell viability and proliferation in A549 cells. Subsequent mechanistic investigation demonstrated that inhibition of MAD2L1 damaged mitochondria, which led to augmented ROS production and cellular senescence, and thus promoted the establishment of a profibrotic microenvironment. Taken together, these results reveal that alleviation of alveolar epithelial cell mitochondrial damage arising from augmentation of MAD2L1 may be a novel therapeutic strategy for mitigating pulmonary fibrosis.


Idiopathic Pulmonary Fibrosis , Animals , Bleomycin/toxicity , Cellular Senescence , Fibrosis , Idiopathic Pulmonary Fibrosis/genetics , Mice , Mitochondria/metabolism , Reactive Oxygen Species/metabolism
17.
J Immunol Res ; 2022: 1824166, 2022.
Article En | MEDLINE | ID: mdl-36033389

More and more studies have shown that long noncoding RNAs (lncRNAs) play essential roles in malignant tumors. The lncRNA MEG3 serves as a crucial molecule in breast cancer development, but the specific molecular mechanism needs to be further explored. We previously reported that Schlafen family member 5 (SLFN5) inhibits breast cancer malignant development by regulating epithelial-mesenchymal transition (EMT), invasion, and proliferation/apoptosis. Herein, we demonstrated that MEG3 was downregulated in pan-cancers and correlated with SLFN5 expression positively in breast cancer by bioinformatics analysis of TCGA and UCSC Xena data. Intervention with MEG3 positively affected SLFN5 expression in breast cancer cells. MEG3 repressed EMT and migration/invasion, similar to our previously reported functions of SLFN5 in breast cancer. Through bioinformatics analysis of starBase and LncBase data, 12 miRNAs were found to regulate both SLFN5 and MEG3, in which miR-146b-5p was confirmed to be regulated by MEG3 using MEG3 siRNA and overexpression method. MiR-146b-5p could bind to both SLFN5 3'UTR and MEG3, and inhibit their expression in a competing endogenous RNA mechanism, assayed by luciferase reporter and RNA pull down methods. Therefore, we conclude that MEG3 positively modulates SLFN5 expression by sponging miR-146b-5p and inhibits breast cancer development.


Breast Neoplasms , MicroRNAs , RNA, Long Noncoding , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation , Epithelial-Mesenchymal Transition , Female , Gene Expression Regulation, Neoplastic , Humans
18.
Biomed Pharmacother ; 149: 112897, 2022 May.
Article En | MEDLINE | ID: mdl-35378503

A great number of pediatric patients undergoing varied procedures make neonatal surgery plus anesthesia become a matter of great concern owing to underlying neurotoxicity in developing brain. The authors set out to assess long-term effects of surgery plus anesthesia in mouse model. Six-day-old C57BL/6 mice were randomized to receive either anesthesia with 3% sevoflurane, abdominal surgery under the same anesthesia, or the control condition. These mice were examined of learning and memory at juvenile age in Morris water maze test. The brain tissues of mice were harvested for Western blot analysis, including purinergic receptors P2X family, CaMKII and NF-κB. Another battery of mice were administered with inhibitors of P2RX2/3 (e.g., A317491) into hippocampal dentate gyrus before behavioral testing. We found that neonatal surgery plus anesthesia, but not sevoflurane anesthesia alone, impaired the learning and memory of juvenile mice, as evidenced by delayed escape latency and reduced platform-crossing times. Immunoblotting analysis showed that behavioral abnormalities were associated with increased levels of P2RX2, phosphorylated-CaMKIIß and activated NF-κB in mouse hippocampus. Injection of A317491 ameliorated the impaired learning and memory of juvenile mice undergoing neonatal surgery plus anesthesia, and it also mitigated the neonatal surgery-induced signaling enhancement of P2RX2/CaMKII/NF-κB. Together, these results indicate that neonatal surgery plus anesthesia may cause long-term cognitive dysfunction, with potential mechanism of increasing P2RX2 and downstream signaling of phosphorylated-CaMKII and NF-κB. Our findings will promote more studies to assess detrimental effects of surgery and accompanying inflammation, diverse anesthetics and even sleeping deprivation on mouse neurodevelopment and neurobehavioral performance.


Anesthesia , Hippocampus , Maze Learning , Memory Disorders , Anesthesia/adverse effects , Animals , Animals, Newborn , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Hippocampus/drug effects , Hippocampus/physiopathology , Maze Learning/drug effects , Maze Learning/physiology , Memory Disorders/epidemiology , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Receptors, Purinergic P2X2 , Sevoflurane/pharmacology
19.
ACS Appl Mater Interfaces ; 14(5): 6801-6809, 2022 Feb 09.
Article En | MEDLINE | ID: mdl-35099923

Sodium-ion batteries have great potential to become large-scale energy storage devices due to their abundant and low-cost resources. However, the lack of anode and cathode materials with both high energy density and long-term cycling performance significantly affects their commercial applications. In this work, uniform CoTe2 nanoparticles are generated from the tellurization of Co nanoparticles, which were coated with polyvinylpyrrolidone in a three-dimensional (3D) porous carbon matrix (CoTe2@3DPNC). Finally, a dual-type carbon confinement structure is formed after tellurization during which citric acid is adopted as the source of the inner carbon scaffold. The hierarchical carbon matrix not only builds a robust and fast ion/electronic conductive 3D architecture but also mitigates the volume expansion and aggregation of CoTe2 during sodium insertion/extraction. Remarkably, the CoTe2@3DPNC electrode displays a high reversible capacity (216.5 mAh g-1/627.9 mAh cm-3 at 0.2 A g-1 after 200 cycles) and outstanding long-term cycling performance (118.1 mAh g-1/342.5 mAh cm-3 even at 5.0 A g-1 after 2500 cycles). Kinetics tests and capacitance calculations clearly reveal a battery-capacitive dual-model Na-storage mechanism. Furthermore, ex situ XRD/SEM/TEM demonstrate superior stability during sodium insertion/extraction. This work provides a valuable strategy for the rational structural design of long-life electrodes for advanced rechargeable batteries.

20.
Chem Sci ; 12(44): 14920-14926, 2021 Nov 17.
Article En | MEDLINE | ID: mdl-34820108

The first chiral phosphoric acid (CPA) catalyzed cycloaddition-elimination cascade reaction of 2-naphthol- and phenol-derived enecarbamates with azonaphthalenes has been established, providing a highly atroposelective route to an array of axially chiral aryl-C3-benzoindoles in excellent yields with excellent enantioselectivities. The success of this strategy derives from the stepwise process involving CPA-catalyzed asymmetric formal [3 + 2] cycloaddition and subsequent central-to-axial chirality conversion by elimination of a carbamate. In addition, the practicality of this reaction had been verified by varieties of transformations towards functionalized atropisomers.

...