Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Chem Sci ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39165731

RESUMEN

The metal-organic framework (MOF) constructed from [Co4Pz8] clusters (Pz = pyrazolate) and 1,3,5-tris(pyrazolate-4-yl) benzene (BTP3-) ligands was structurally predicted many years ago, and expected to be a promising candidate for various applications owing to its unique clusters and highly open 3D framework structure. However, this MOF has not been experimentally prepared yet, despite extensive efforts were made. In this work, we present the successful construction of this MOF, hereinafter referred to as BUT-124(Co), by adopting a two-step synthesis strategy, involving the initial construction of a template framework (BUT-124(Cd)) followed by a post-synthetic metal metathesis process. The effects of various cobalt sources and solvents were systematically investigated, and an innovative stepwise metathesis strategy was employed to optimize the exchange rates and the porosity of the material. BUT-124(Co) demonstrates high catalytic activity in the oxygen evolution reaction (OER), achieving a competitive performance with an overpotential of 393 mV at a current density of 10 mA cm-2, and also affords remarkable long-term stability during potentiostatic electrolysis in 1 M KOH solution, surpassing the durability of many benchmark catalysts. This work not only introduces a novel MOF material with promising properties but also exemplifies a strategic synthesis approach for pyrazolate-based MOFs, paving the way for advancements in diverse application fields.

2.
ACS Nano ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39186676

RESUMEN

Photodetectors are in huge demand in multiple fields, such as remote sensing, chemical detection, security, and medical imaging. Carbon nanotubes (CNTs) are promising candidates for high-performance photodetectors due to their extraordinary optical and electrical properties. However, the performance of previously reported CNT-based photodetectors is far from the intrinsic photoelectrical properties of CNTs because of the noncontinuous lengths, structural defects, and unsatisfactory structural design of the previously used short CNTs. The key to improving the performance of CNT-based photodetectors is to increase the length and structural quality of the CNTs. Herein, high-performance photodetectors were fabricated by using high-density suspended ultralong CNTs (SUCNTs). The suspended structures of ultralong CNTs not only reduced the electron-phonon interactions generated by substrates but also largely avoided bolometric effects through efficient heat dissipation. Moreover, the characteristics of high areal density and defect-free structures of SUCNTs could increase the effective absorption areas and improve their carrier mobility, resulting in enhanced photoconductive responses. Consequently, compared with the nonsuspended short CNTs, the SUCNT-based photodetectors achieved significantly improved photodetection performance, such as high responsivity (0.181 A W-1), detectivity (1.20 × 109 cm Hz1/2 W-1), ultrafast response (0.13 ms), and broad detection range (405-850 nm).

3.
Angew Chem Int Ed Engl ; : e202411744, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012658

RESUMEN

Adsorptive C2H2/C2H4 separation using metal-organic frameworks (MOFs) has emerged as a promising technology for the removal of C2H2 (acetylene) impurity (1%) from C2H4 (ethylene). The practical application of these materials involves the optimization of separation performance as well as development of scalable and green production protocols.Herein, we report the efficient C2H2/C2H4 separation in a MOF, Cu(OH)INA (INA: isonicotinate) which achieves a record C2H2 packing density of 351 mg cm-3 at 0.01 bar through high affinity towards C2H2. DFT (density functional theory) calculations reveal the synergistic binding mechanism through pore confinement and the oxygen sites in pore wall.The weakly basic nature of binding sites leads to a relatively low heat of adsorption (Qst) of approximately 36 kJ/mol, which is beneficial for material regeneration and thermal management. Furthermore, a scalable and environmentally friendly synthesis protocol with a high space-time yield of 544 kg m-3 day-1 has been developed without using any modulating agents. This material also demonstrates enduring separation performance for multiple cycles, maintaining its efficacy after exposure to water or air for three months.

4.
J Am Chem Soc ; 146(28): 19303-19309, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38970779

RESUMEN

Sulfur hexafluoride (SF6) is extensively employed in the power industry. However, its emissions significantly contribute to the greenhouse effect. The direct recovery of high purity SF6 from industrial waste gases would benefit its sustainable use, yet this represents a considerable challenge. Herein, we report the enrichment of SF6 from SF6/N2 mixtures via adsorptive separation in a stable Co(II)-pyrazolate MOF BUT-53 (BUT: Beijing University of Technology), which features dynamic molecular traps. BUT-53 exhibits an excellent SF6 adsorption uptake of 2.82 mmol/g at 0.1 bar and 298 K, as well as an unprecedented SF6/N2 (10:90) selectivity of 2485. Besides, the remarkable SF6/N2 selectivity of BUT-53 enables recovery of high purity (>99.9%) SF6 from a low concentration (10%) mixture through a breakthrough experiment. The excellent SF6/N2 separation efficiency was also well maintained under humid conditions (RH = 90%) over multiple cycles. Molecular simulation, single-crystal diffraction, and adsorption kinetics studies elucidate the associated adsorption mechanism and water tolerance.

5.
ACS Appl Bio Mater ; 7(7): 4307-4322, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38954747

RESUMEN

In the realm of clinical applications, the concern surrounding biomedical device-related infections (BDI) is paramount. To mitigate the risk associated with BDI, enhancing surface characteristics such as lubrication and antibacterial efficacy is considered as a strategic approach. This study delineated the synthesis of a multifunctional copolymer, embodying self-adhesive, lubricating, and antibacterial properties, achieved through free radical polymerization and a carbodiimide coupling reaction. The copolymer was adeptly modified on the surface of stainless steel 316L (SS316L) substrates by employing a facile dip-coating technique. Comprehensive characterizations were performed by using an array of analytical techniques including Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, optical interferometry, scanning electron microscopy, and atomic force microscopy. Nanoscale tribological assessments revealed a notable reduction in the value of the friction coefficient of the copolymer-coated SS316L substrates compared to bare SS316L samples. The coating demonstrated exceptional resistance to protein adsorption, as evidenced in protein contamination models employing bovine serum albumin and fibrinogen. The bactericidal efficacy of the copolymer-modified surfaces was significantly improved against pathogenic strains such as Staphylococcus aureus and Escherichia coli. Additionally, in vitro evaluations of blood compatibility and cellular compatibility underscored the remarkable anticoagulant performance and biocompatibility. Collectively, these findings indicated that the developed copolymer coating represented a promising candidate, with its facile modification approach, for augmenting lubrication and antifouling properties in the field of biomedical implant applications.


Asunto(s)
Antibacterianos , Materiales Biocompatibles Revestidos , Escherichia coli , Ensayo de Materiales , Staphylococcus aureus , Propiedades de Superficie , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Tamaño de la Partícula , Prótesis e Implantes , Humanos , Pruebas de Sensibilidad Microbiana , Animales , Polímeros/química , Polímeros/farmacología , Acero Inoxidable/química , Lubrificación , Albúmina Sérica Bovina/química
6.
Artículo en Inglés | MEDLINE | ID: mdl-38969612

RESUMEN

With advancements in extracorporeal life support (ECLS) technologies, venoarterial extracorporeal membrane oxygenation (VA-ECMO) has emerged as a crucial cardiopulmonary support mechanism. This review explores the significance of VA-ECMO system configuration, cannulation strategies, and timing of initiation. Through an analysis of medication management strategies, complication management, and comprehensive preweaning assessments, it aims to establish a multidimensional evaluation framework to assist clinicians in making informed decisions regarding weaning from VA-ECMO, thereby ensuring the safe and effective transition of patients.

8.
Adv Mater ; 36(32): e2402257, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38831681

RESUMEN

Ultralong carbon nanotubes (CNTs) are considered as promising candidates for many cutting-edge applications. However, restricted by the extremely low yields of ultralong CNTs, their practical applications can hardly be realized. Therefore, new methodologies shall be developed to boost the growth efficiency of ultralong CNTs and alleviate their areal density decay at the macroscale level. Herein, a facile, universal, and controllable method for the in situ synthesis of floating bimetallic catalysts (FBCs) is proposed to grow ultralong CNT arrays with high yields and uniformity. Ferrocene and metal acetylacetonates serve as catalyst precursors, affording the successful synthesis of a series of FBCs with controllable compositions. Among these FBCs, the optimized FeCu catalyst increases the areal density of ultralong CNT arrays to a record-breaking value of ≈8100 CNTs mm-1 and exhibits a lifetime 3.40 times longer than that of Fe, thus achieving both high yields and uniformity. A 30-centimeters-long and high-density ultralong CNT array is also successfully grown with the assistance of FeCu catalysts. As evidenced by this kinetic model and molecular dynamics simulations, the introduction of Cu into Fe can simultaneously improve the catalyst fluidity and decrease carbon solubility, and an optimal catalytic performance will be achieved by balancing this tradeoff.

9.
Toxics ; 12(6)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38922074

RESUMEN

As an antioxidant and antiozonant, N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is predominantly used in the rubber industry to prevent degradation. However, 6PPD can be ozonated to generate a highly toxic transformation product called N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-quinone), which is toxic to aquatic and terrestrial organisms. Thus, 6PPD and 6PPD-quinone, two emerging contaminants, have attracted extensive attention recently. This review discussed the levels and distribution of 6PPD and 6PPD-quinone in the environment and investigated their toxic effects on a series of organisms. 6PPD and 6PPD-quinone have been widely found in air, water, and dust, while data on soil, sediment, and biota are scarce. 6PPD-quinone can cause teratogenic, developmental, reproductive, neuronal, and genetic toxicity for organisms, at environmentally relevant concentrations. Future research should pay more attention to the bioaccumulation, biomagnification, transformation, and toxic mechanisms of 6PPD and 6PPD-quinone.

10.
Pharm Biol ; 62(1): 423-435, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38757785

RESUMEN

CONTEXT: Diabetic kidney disease (DKD) affects nearly 40% of diabetic patients, often leading to end-stage renal disease that requires renal replacement therapies, such as dialysis and transplantation. The gut microbiota, an integral aspect of human evolution, plays a crucial role in this condition. Traditional Chinese medicine (TCM) has shown promising outcomes in ameliorating DKD by addressing the gut microbiota. OBJECTIVE: This review elucidates the modifications in gut microbiota observed in DKD and explores the impact of TCM interventions on correcting microbial dysregulation. METHODS: We searched relevant articles from databases including Web of Science, PubMed, ScienceDirect, Wiley, and Springer Nature. The following keywords were used: diabetic kidney disease, diabetic nephropathy, gut microbiota, natural product, TCM, Chinese herbal medicine, and Chinese medicinal herbs. Rigorous criteria were applied to identify high-quality studies on TCM interventions against DKD. RESULTS: Dysregulation of the gut microbiota, including Lactobacillus, Streptococcus, and Clostridium, has been observed in individuals with DKD. Key indicators of microbial dysregulation include increased uremic solutes and decreased short-chain fatty acids. Various TCM therapies, such as formulas, tablets, granules, capsules, and decoctions, exhibit unique advantages in regulating the disordered microbiota to treat DKD. CONCLUSION: This review highlights the importance of targeting the gut-kidney axis to regulate microbial disorders, their metabolites, and associated signaling pathways in DKD. The Qing-Re-Xiao-Zheng formula, the Shenyan Kangfu tablet, the Huangkui capsule, and the Bekhogainsam decoction are potential candidates to address the gut-kidney axis. TCM interventions offer a significant therapeutic approach by targeting microbial dysregulation in patients with DKD.


Asunto(s)
Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Medicina Tradicional China , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Humanos , Nefropatías Diabéticas/tratamiento farmacológico , Medicina Tradicional China/métodos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Animales
11.
Front Med (Lausanne) ; 11: 1284199, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596793

RESUMEN

Background: Atherosclerosis (AS) is a multifaceted disease characterized by disruptions in lipid metabolism, vascular inflammation, and the involvement of diverse cellular constituents. Recent investigations have progressively underscored the role of microRNA (miR) dysregulation in cardiovascular diseases, notably AS. Proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) can effectively reduce circulating levels of low-density lipoprotein cholesterol (LDL-C) and lipoprotein (a) [Lp (a)], potentially fostering a more enduring phenotype for AS plaques. However, the underlying mechanisms by which PCSK9i enhances plaque stability remain unclear. In this study, we used microarray and bioinformatics techniques to analyze the regulatory impacts on gene expression pertinent to AS, thereby unveiling potential mechanisms underlying the plaque-stabilizing attributes of PCSK9i. Methods: ApoE-/- mice were randomly allocated into control, AS, PCSK9i, and Atorvastatin groups. The AS model was induced through a high-fat diet (HFD), succeeded by interventions: the PCSK9i group was subjected to subcutaneous SBC-115076 injections (8 mg/kg, twice weekly), and the Atorvastatin group received daily oral Atorvastatin (10 mg/kg) while on the HFD. Subsequent to the intervention phase, serum analysis, histological assessment using hematoxylin and eosin (H&E) and Oil Red O staining, microarray-centered miRNA analysis utilizing predictions from TargetScan and miRTarBase, and analyses using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were executed to illuminate potential pathways. Real-time fluorescence quantitative PCR (RT-qPCR) was employed to quantify the expression levels of target genes. Results: In comparison to the control group, the AS group displayed a significant elevation in blood lipid levels. Both PCSK9i and Atorvastatin effectively attenuated blood lipid levels, with PCSK9i exhibiting a more pronounced lipid-lowering impact, particularly concerning TG and LDL-C levels. Over the course of AS progression, the expression levels of mmu-miR-134, mmu-miR-141-5p, mmu-miR-17-3p, mmu-miR-195-3p, mmu-miR-210, mmu-miR-33-5p, mmu-miR-410, mmu-miR-411-5p, mmu-miR-499, mmu-miR-672-5p, mmu-miR-675-3p, and mmu-miR-301b underwent dynamic fluctuations. PCSK9i significantly down-regulated the expression of mmu-miR-186-5p, mmu-miR-222, mmu-miR-375-3p, and mmu-miR-494-3p. Further enrichment analysis disclosed that mmu-miR-186-5p, mmu-miR-222, mmu-miR-375-3p, and mmu-miR-494-3p were functionally enriched for cardiovascular smooth muscle cell proliferation, migration, and regulation. RT-qPCR results manifested that, in comparison to the AS group, PCSK9i significantly upregulated the expression of Wipf2, Pdk1, and Yap1 (p < 0.05). Conclusion: Aberrant miRNA expression may play a pivotal role in AS progression in murine models of AS. The subcutaneous administration of PCSK9i exerted anti-atherosclerotic effects by targeting the miR-186-5p/Wipf2 and miR-375-3p/Pdk1/Yap1 axes, thereby promoting the transition of AS plaques into a more stable form.

12.
Artículo en Inglés | MEDLINE | ID: mdl-38597816

RESUMEN

Airflow sensors are in huge demand in many fields such as the aerospace industry, weather forecasting, environmental monitoring, chemical and biological engineering, health monitoring, wearable smart devices, etc. However, traditional airflow sensors can hardly meet the requirements of these applications in the aspects of sensitivity, response speed, detection threshold, detection range, and power consumption. Herein, this work reports high-performance airflow sensors based on suspended ultralong carbon nanotube (CNT) crossed networks (SCNT-CNs). The unique topologies of SCNT-CNs with abundant X junctions can fully exhibit the extraordinary intrinsic properties of ultralong CNTs and significantly improve the sensing performance and robustness of SCNT-CNs-based airflow sensors, which simultaneously achieved high sensitivity, fast response speed, low detection threshold, and wide detection range. Moreover, the capability for encapsulation also guaranteed the practicality of SCNT-CNs, enabling their applications in respiratory monitoring, flow rate display and transient response analysis. Simulations were used to unveil the sensing mechanisms of SCNT-CNs, showing that the piezoresistive responses were mainly attributed to the variation of junction resistances. This work shows that SCNT-CNs have many superiorities in the fabrication of advanced airflow sensors as well as other related applications.

13.
Cytometry A ; 105(6): 437-445, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38549391

RESUMEN

Circulating inflammatory cells in eyes have emerged as early indicators of numerous major diseases, yet the monitoring of these cells remains an underdeveloped field. In vivo flow cytometry (IVFC), a noninvasive technique, offers the promise of real-time, dynamic quantification of circulating cells. However, IVFC has not seen extensive applications in the detection of circulating cells in eyes, possibly due to the eye's unique physiological structure and fundus imaging limitations. This study reviews the current research progress in retinal flow cytometry and other fundus examination techniques, such as adaptive optics, ultra-widefield retinal imaging, multispectral imaging, and optical coherence tomography, to propose novel ideas for circulating cell monitoring.


Asunto(s)
Citometría de Flujo , Tomografía de Coherencia Óptica , Citometría de Flujo/métodos , Humanos , Tomografía de Coherencia Óptica/métodos , Retina/citología , Retina/diagnóstico por imagen , Ojo , Animales
14.
Adv Sci (Weinh) ; 11(17): e2310025, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38408136

RESUMEN

As a unique subclass of metal-organic frameworks (MOFs), MOFs with open metal site (OMS) are demonstrated efficient gas separation performance through pi complexation with unsaturated hydrocarbons. However, their practical application faces the challenge of humidity that causes structure degradation and completive binding at the OMS. In this work, the effect of linker methylation of a copper MOF (BUT-155) on the C2H2/CO2 separation performance under humid condition is evaluated. The water adsorption isotherm, adsorption kinetics, and breakthrough under dry and humid conditions are performed. The BUT-155 with methylated linker exhibits lower water uptake and adsorption kinetics under humid condition (RH = 20%), in comparison with HKUST-1. Therefore, the C2H2/CO2 separation performance of BUT-155 is much less affected by water, especially under higher gas flow rate. Moreover, the dynamic C2H2/CO2 separation performance of BUT-155 can maintain five breakthrough cycles under humid conditions (RH = 20% and RH = 80%) without obvious performance degradation.

15.
Small ; 20(25): e2307281, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38225701

RESUMEN

Osteoarthritis (OA) is a typical joint degenerative disease that is prevalent worldwide and significantly affects the normal activities of patients. Traditional treatments using diclofenac (DCF) as an anti-inflammatory drug by oral administration and transdermal delivery have many inherent deficiencies. In this study, a lubricating microneedles (MNs) system for the treatment of osteoarthritis with multistage sustained drug delivery and great reduction in skin damage during MNs penetration is developed. The bilayer dissolvable MNs system, namely HA-DCF@PDMPC, is prepared by designating the composite material of hyaluronic acid (HA) and covalently conjugated drug compound (HA-DCF) as the MNs tips and then modifying the surface of MNs tips with a self-adhesive lubricating copolymer (PDMPC). The MNs system is designed to achieve sustained drug release of DCF via ester bond hydrolysis, physical diffusion from MNs tips, and breakthrough of lubrication coating. Additionally, skin damage is reduced due to the presence of the lubrication coating on the superficial surface. Therefore, the lubricating MNs with multistage sustained drug delivery show good compliance as a transdermal patch for OA treatment, which is validated from anti-inflammatory cell tests and therapeutic animal experiments, down-regulating the expression levels of pro-inflammatory factors and alleviating articular cartilage destruction.


Asunto(s)
Diclofenaco , Sistemas de Liberación de Medicamentos , Ácido Hialurónico , Agujas , Osteoartritis , Osteoartritis/tratamiento farmacológico , Animales , Diclofenaco/administración & dosificación , Diclofenaco/uso terapéutico , Diclofenaco/farmacología , Ácido Hialurónico/química , Lubrificación , Humanos , Preparaciones de Acción Retardada/química
16.
Nat Commun ; 15(1): 815, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280849

RESUMEN

Radiative cooling is a zero-energy technology that enables subambient cooling by emitting heat into outer space (~3 K) through the atmospheric transparent windows. However, existing designs typically focus only on the main atmospheric transparent window (8-13 µm) and ignore another window (16-25 µm), under-exploiting their cooling potential. Here, we show a dual-selective radiative cooling design based on a scalable thermal emitter, which exhibits selective emission in both atmospheric transparent windows and reflection in the remaining mid-infrared and solar wavebands. As a result, the dual-selective thermal emitter exhibits an ultrahigh subambient cooling capacity (~9 °C) under strong sunlight, surpassing existing typical thermal emitters (≥3 °C cooler) and commercial counterparts (as building materials). Furthermore, the dual-selective sample also exhibits high weather resistance and color compatibility, indicating a high practicality. This work provides a scalable and practical radiative cooling design for sustainable thermal management.

17.
Chem Soc Rev ; 53(4): 2056-2098, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38214051

RESUMEN

Global warming has become a growing concern over decades, prompting numerous research endeavours to reduce the carbon dioxide (CO2) emission, the major greenhouse gas (GHG). However, the contribution of other non-CO2 GHGs including methane (CH4), nitrous oxide (N2O), fluorocarbons, perfluorinated gases, etc. should not be overlooked, due to their high global warming potential and environmental hazards. In order to reduce the emission of non-CO2 GHGs, advanced separation technologies with high efficiency and low energy consumption such as adsorptive separation or membrane separation are highly desirable. Advanced porous materials (APMs) including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs), porous organic polymers (POPs), etc. have been developed to boost the adsorptive and membrane separation, due to their tunable pore structure and surface functionality. This review summarizes the progress of APM adsorbents and membranes for non-CO2 GHG separation. The material design and fabrication strategies, along with the molecular-level separation mechanisms are discussed. Besides, the state-of-the-art separation performance and challenges of various APM materials towards each type of non-CO2 GHG are analyzed, offering insightful guidance for future research. Moreover, practical industrial challenges and opportunities from the aspect of engineering are also discussed, to facilitate the industrial implementation of APMs for non-CO2 GHG separation.

18.
J Phys Chem Lett ; 14(51): 11550-11557, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38096129

RESUMEN

Polymer dielectrics with excellent high-temperature capacitive energy storage performance are in urgent demand for modern power electronic devices and high-voltage electrical systems. Nevertheless, the energy storage capability usually degrades dramatically at increased temperatures, owing to the exponentially increased conduction loss. Herein, a trace of commercially available aluminum nitride (AlN) nanoparticles is incorporated into the poly(ether imide) (PEI) matrix to inhibit the conduction loss. The nanostructured AlN component with a large specific surface area can provide abundant sites for the collision of carriers. More importantly, the generated new trap energy levels can immobilize the carriers, accordingly contributing to the reduction in leakage current. From this, the discharged energy density at 150 °C of PEI composites increases by 82.13% from 2.63 J/cm3 for pristine PEI to 4.79 J/cm3 for PEI composites. This work establishes a facile approach to enhancing the high-temperature capacitive performance of polymer dielectrics.

19.
Adv Mater ; : e2309640, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38100119

RESUMEN

Superior high-temperature capacitive performance of polymer dielectrics is critical for the modern film capacitor demanded in the harsh-environment electronic and electrical systems. Unfortunately, the capacitive performance degrades rapidly at elevated temperatures owing to the exponential growth of conduction loss. The conduction loss is mainly composed of electrode and bulk-limited conduction. Herein, the contribution of surface and bulk factors is unified to conduction loss, and the loss is thoroughly suppressed. The experimental results demonstrate that the polar oxygen-containing groups on the surface of polymer dielectrics can act as the charge trap sites to immobilize the injected charges from electrode, which can in turn establish a built-in field to weaken the external electric field and augment the injection barrier height. Wide bandgap aluminum oxide (Al2 O3 ) nanoparticle fillers can serve as deep traps to constrain the transport of injected or thermally activated charges in the bulk phase. From this, at 200 °C, the discharged energy density with a discharge-charge efficiency of 90% increases by 1058.06% from 0.31 J cm-3 for pristine polyetherimide to 3.59 J cm-3 for irradiated composite film. The principle of simultaneously inhibiting the electrode and bulk-limited conduction losses could be easily extended to other polymer dielectrics for high-temperature capacitive performance.

20.
J Med Chem ; 66(14): 9784-9796, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37406165

RESUMEN

Heteroaromatic stacking interactions are important in drug binding, supramolecular chemistry, and materials science, making protein-ligand model systems of these interactions of considerable interest. Here we studied 30 congeneric ligands that each present a distinct heteroarene for stacking between tyrosine residues at the dimer interface of procaspase-6. Complex X-ray crystal structures of 10 analogs showed that stacking geometries were well conserved, while high-accuracy computations showed that heteroarene stacking energy was well correlated with predicted overall ligand binding energies. Empirically determined KD values in this system thus provide a useful measure of heteroarene stacking with tyrosine. Stacking energies are discussed in the context of torsional strain, the number and positioning of heteroatoms, tautomeric state, and coaxial orientation of heteroarene in the stack. Overall, this study provides an extensive data set of empirical and high-level computed binding energies in a versatile new protein-ligand system amenable to studies of other intermolecular interactions.


Asunto(s)
Proteínas , Tirosina , Modelos Moleculares , Ligandos , Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA