Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
J Chem Inf Model ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276067

RESUMEN

The dynamics of RNAs are related intimately to their functions. Molecular flexibility, as a starting point for understanding their dynamics, has been utilized to predict many characteristics associated with their functions. Since the experimental measurement methods are time-consuming and labor-intensive, it is urgently needed to develop reliable theoretical methods to predict RNA flexibility. In this work, we develop an effective machine learning method, RNAfcg, to predict RNA flexibility, where the Random Forest (RF) is trained by features including the topological centralities, flexibility-rigidity index, and global characteristics first introduced by us, as well as some traditional sequence and structural features. The analyses show that the three types of features introduced first have significant contributions to RNA flexibility prediction, among which the topological type contributes the most, which indicates the importance of structural topology in determining RNA flexibility. The performance comparison indicates that RNAfcg outperforms the state-of-the-art machine learning methods and the commonly used Gaussian Network Model (GNM) models, achieving a much higher Pearson correlation coefficient (PCC) of 0.6619 on the test data set. This work is helpful for understanding RNA dynamics and can be used to predict RNA function information. The source code is available at https://github.com/ChunhuaLab/RNAfcg/.

2.
Int J Nanomedicine ; 19: 9333-9349, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39286354

RESUMEN

Introduction: Immunotherapy has led to a paradigm shift in reinvigorating treatment of cancer. Nevertheless, tumor associated macrophages (TAMs) experience functional polarization on account of the generation of suppressive metabolites, contributing to impaired antitumor immune responses. Methods: Hence, metabolic reprogramming of tumor microenvironment (TME) can synergistically improve the efficacy of anti-tumor immunotherapy. Herein, we engineered an iron-based nanoplatform termed ERFe3O4 NPs. This platform features hollow Fe3O4 nanoparticles loaded with the natural product emodin, the outer layer is coated with red blood cell membrane (mRBCs) inserted with DSPE-PEG2000-galactose. This effectively modulates lactate production, thereby reversing the tumor immune suppressive microenvironment (TIME). Results: The ERFe3O4 NPs actively targeted TAMs on account of their ability to bind to M2-like TAMs with high expression of galectin (Mgl). ERFe3O4 NPs achieved efficient ability to reverse TIME via the production of reducing lactate and prompting enrichment iron of high concentrations. Furthermore, ERFe3O4 NPs resulted in heightened expression of CD16/32 and enhanced TNF-α release, indicating promotion of M1 TAMs polarization. In vitro and in vivo experiments revealed that ERFe3O4 NPs induced significant apoptosis of tumor cells and antitumor immune response. Discussion: This study combines Traditional Chinese Medicine (TCM) with nanomaterials to synergistically reprogram TAMs and reverse TIME, opening up new ideas for improving anti-tumor immunotherapy.


Asunto(s)
Inmunoterapia , Microambiente Tumoral , Microambiente Tumoral/efectos de los fármacos , Animales , Inmunoterapia/métodos , Ratones , Línea Celular Tumoral , Humanos , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/inmunología , Ratones Endogámicos C57BL , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Apoptosis/efectos de los fármacos , Hierro/química , Femenino
3.
J Chem Inf Model ; 64(15): 6197-6204, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39075972

RESUMEN

Allostery is one of the most direct and efficient ways to regulate protein functions. The diverse allosteric sites make it possible to design allosteric modulators of differential selectivity and improved safety compared with those of orthosteric drugs targeting conserved orthosteric sites. Here, we develop an ensemble machine learning method AllosES to predict protein allosteric sites in which the new and effective features are utilized, including the entropy transfer-based dynamic property, secondary structure features, and our previously proposed spatial neighbor-based evolutionary information besides the traditional physicochemical properties. To overcome the class imbalance problem, the multiple grouping strategy is proposed, which is applied to feature selection and model construction. The ensemble model is constructed where multiple submodels are trained on multiple training subsets, respectively, and their results are then integrated to be the final output. AllosES achieves a prediction performance of 0.556 MCC on the independent test set D24, and additionally, AllosES can rank the real allosteric sites in the top three for 83.3/89.3% of allosteric proteins from the test set D24/D28, outperforming the state-of-the-art peer methods. The comprehensive results demonstrate that AllosES is a promising method for protein allosteric site prediction. The source code is available at https://github.com/ChunhuaLab/AllosES.


Asunto(s)
Sitio Alostérico , Entropía , Proteínas , Proteínas/química , Proteínas/metabolismo , Aprendizaje Automático , Modelos Moleculares
4.
Langmuir ; 40(25): 13265-13275, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38857070

RESUMEN

Artificial photoelectrochemistry (PEC) has emerged as a promising and efficient technology for the sustainable conversion of solar energy into chemicals. In this study, we present a refined PEC process that enables the highly selective and stable production of piperonal and other valuable aldehydes through the oxidation of the corresponding alcohols. By employing Fe2O3 or TiO2 as the photoanode material and 2,2,6,6-tetramethylpiperidinooxy (TEMPO) as a redox mediator in an H2O/acetonitrile solution, we achieve 100% selectivity and a >95% Faradaic efficiency for piperonal production from piperonyl alcohol (PA) oxidation. Remarkably, we reveal the enhancing effect on the PA oxidation reactivity of appropriate-amount water in the solvent as it plays a crucial role in inhibiting the photoelectron-hole recombination efficiency and facilitating charge transfer. Mechanistic analysis suggests that TEMPO-mediated PA oxidation involves the formation of •O2- radicals by the reduction of oxygen on the cathode, resulting in water as the sole byproduct. Furthermore, our PEC oxidation system exhibits applications on the 100%-selective production of various conjugated aldehydes, including 4-anisaldehyde, cuminaldehyde, and the vitamin B6 derivative. By implementing a TiO2//Fe2O3 dual-photoanode system, we achieve an enhanced piperonal production rate of 31.2 µmol h-1 cm-2 at 1.0 V vs Ag/Ag+ and demonstrate its stability over a 102 h cyclic test, ensuring near-quantitative yield. This research illuminates the potential of the PEC strategy as a generally applicable method for the efficient production of high-value aldehydes.

5.
Microorganisms ; 12(5)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38792712

RESUMEN

Ethyl carbamate (EC) is a natural by-product in the production of fermented food and alcoholic beverages and is carcinogenic and genotoxic, posing a significant food safety concern. In this study, Clavispora lusitaniae Cl-p with a strong EC degradation ability was isolated from Daqu rich in microorganisms by using EC as the sole nitrogen source. When 2.5 g/L of EC was added to the fermentation medium, the strain decomposed 47.69% of ethyl carbamate after five days of fermentation. It was unexpectedly found that the strain had the ability to produce aroma and ester, and the esterification power reached 30.78 mg/(g·100 h). When the strain was added to rice wine fermentation, compared with the control group, the EC content decreased by 41.82%, and flavor substances such as ethyl acetate and ß-phenylethanol were added. The EC degradation rate of the immobilized crude enzyme in the finished yellow rice wine reached 31.01%, and the flavor substances of yellow rice wine were not affected. The strain is expected to be used in the fermented food industry to reduce EC residue and improve the safety of fermented food.

6.
Int J Biol Macromol ; 268(Pt 2): 131670, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38643919

RESUMEN

Bacterial infection, hyperinflammation and hypoxia, which can lead to amputation in severe cases, are frequently observed in diabetic wounds, and this has been a critical issue facing the repair of chronic skin injuries. In this study, a copper-based MOF (TAX@HKUST-1) highly loaded with taxifolin (TAX) with a drug loading of 41.94 ± 2.60 % was prepared. In addition, it has excellent catalase activity, and by constructing an oxygen-releasing hydrogel (PTH) system with calcium peroxide (CaO2), it can be used as a nano-enzyme to promote the generation of oxygen from hydrogen peroxide (H2O2) to provide sufficient oxygen to the wound, and at the same time, solve the problem of the oxidative stress damage caused by excess H2O2 to the cells during the oxygen-releasing process. On the other hand, TAX and HKUST-1 in PTH synergistically promoted antimicrobial and anti-oxidative stress properties, and the bacterial inhibition rate against Staphylococcus aureus and Escherichia coli reached 90 %. In vivo experiments have shown that PTH hydrogel is able to treat diabetic skin repair by inhibiting the expression of inflammation-related proteins and promoting epidermal neogenesis, angiogenesis and collagen deposition.


Asunto(s)
Alginatos , Quitosano , Hidrogeles , Alcohol Polivinílico , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Alginatos/química , Alginatos/farmacología , Quitosano/química , Quitosano/análogos & derivados , Quitosano/farmacología , Animales , Alcohol Polivinílico/química , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Quercetina/farmacología , Quercetina/química , Quercetina/análogos & derivados , Diabetes Mellitus Experimental/tratamiento farmacológico , Humanos , Escherichia coli/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratones
7.
BMC Genomics ; 25(1): 293, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504181

RESUMEN

BACKGROUND: Alternative splicing (AS) is a principal mode of genetic regulation and one of the most widely used mechanisms to generate structurally and functionally distinct mRNA and protein variants. Dysregulation of AS may result in aberrant transcription and protein products, leading to the emergence of human diseases. Although considered important for regulating gene expression, genome-wide AS dysregulation, underlying mechanisms, and clinical relevance in knee osteoarthritis (OA) remain unelucidated. Therefore, in this study, we elucidated and validated AS events and their regulatory mechanisms during OA progression. RESULTS: In this study, we identified differentially expressed genes between human OA and healthy meniscus samples. Among them, the OA-associated genes were primarily enriched in biological pathways such as extracellular matrix organization and ossification. The predominant OA-associated regulated AS (RAS) events were found to be involved in apoptosis during OA development. The expression of the apoptosis-related gene BCL2L13, XAF1, and NF2 were significantly different between OA and healthy meniscus samples. The construction of a covariation network of RNA-binding proteins (RBPs) and RAS genes revealed that differentially expressed RBP genes LAMA2 and CUL4B may regulate the apoptotic genes XAF1 and BCL2L13 to undergo AS events during OA progression. Finally, RT-qPCR revealed that CUL4B expression was significantly higher in OA meniscus samples than in normal controls and that the AS ratio of XAF1 was significantly different between control and OA samples; these findings were consistent with their expected expression and regulatory relationships. CONCLUSIONS: Differentially expressed RBPs may regulate the AS of apoptotic genes during knee OA progression. XAF1 and its regulator, CUL4B, may serve as novel biomarkers and potential therapeutic targets for this disease.


Asunto(s)
Osteoartritis de la Rodilla , Humanos , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/metabolismo , Empalme Alternativo , ARN Mensajero/genética , Biomarcadores/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo
8.
J Phys Chem B ; 128(6): 1360-1370, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38308647

RESUMEN

The inwardly rectifying potassium channel Kir3.2, a member of the inward rectifier potassium (Kir) channel family, exerts important biological functions through transporting potassium ions outside of the cell, during which a large-scale synergistic movement occurs among its different domains. Currently, it is not fully understood how the binding of the ligand to the Kir3.2 channel leads to the structural changes and which key residues are responsible for the channel gating and allosteric dynamics. Here, we construct the Gaussian network model (GNM) of the Kir3.2 channel with the secondary structure and covalent interaction information considered (sscGNM), which shows a better performance in reproducing the channel's flexibility compared with the traditional GNM. In addition, the sscANM-based perturbation method is used to simulate the channel's conformational transition caused by the activator PIP2's binding. By applying certain forces to the PIP2 binding pocket, the coarse-grained calculations generate the similar conformational changes to the experimental observation, suggesting that the topology structure as well as PIP2 binding are crucial to the allosteric activation of the Kir3.2 channel. We also utilize the sscGNM-based thermodynamic cycle method developed by us to identify the key residues whose mutations significantly alter the channel's binding free energy with PIP2. We identify not only the residues important for the specific binding but also the ones critical for the allosteric transition coupled with PIP2 binding. This study is helpful for understanding the working mechanism of Kir3.2 channels and can provide important information for related drug design.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Potasio , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Mutación , Estructura Secundaria de Proteína , Fenómenos Biofísicos , Potasio/metabolismo
9.
Int J Biol Macromol ; 263(Pt 1): 130256, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38368995

RESUMEN

The current clinical treatment of diabetic wounds is still based on oxygen therapy, and the slow healing of skin wounds due to hypoxia has always been a key problem in the repair of chronic skin injuries. To overcome this problem, the oxygen-producing matrix CaO2NPS based on the temperature-sensitive dihydromyricetin-loaded hydrogel was prepared. In vitro activity showed that the dihydromyricetin (DHM) oxygen-releasing temperature-sensitive hydrogel composite (DHM-OTH) not only provided a suitable oxygen environment for cells around the wound to survive but also had good biocompatibility and various biological activities. By constructing a T2D wound model, we further investigated the repairing effect of DHM-OTH on chronic diabetic skin wounds and the mechanisms involved. DHM-OTH was able to reduce inflammatory cells and collagen deposition and promote angiogenesis and cell proliferation for diabetic wound healing. These in vitro and in vivo data suggest that DHM-OTH accelerates diabetic wound repair as a novel method to efficiently deliver oxygen to wound tissue, providing a promising strategy to improve diabetic wound healing.


Asunto(s)
Quitosano , Diabetes Mellitus Experimental , Flavonoles , Animales , Humanos , Hidrogeles/farmacología , Hidrogeles/uso terapéutico , Poloxámero/farmacología , Quitosano/farmacología , Cicatrización de Heridas , Oxígeno , Diabetes Mellitus Experimental/tratamiento farmacológico , Vendajes
10.
Int J Biol Macromol ; 262(Pt 1): 130079, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340939

RESUMEN

Due to impaired immune function, diabetic wounds are highly susceptible to the development of excessive inflammatory responses and prolonged recurrent bacterial infections that impede diabetic wound healing. Therefore, it is necessary to design and develop a wound dressing that controls bacterial infection and inhibits excessive inflammatory response. In this study, hyaluronic acid (HA) was modified using dopamine (DA). Subsequently, cordycepin (COR) was loaded into dopamine-modified hyaluronic acid (OHDA)/gelatin (GEL) nanofiber wound dressing by electrostatic spinning technique. The constructed COR/OHDA/GEL nanofiber membrane has good thermal stability, hydrophilicity, and air permeability. In vitro experiments showed that the obtained COR/OHDA/GEL nanofiber membranes had good antimicrobial efficacy (S. aureus: 95.60 ± 0.99 %, E. coli: 71.17 ± 6.87 %), antioxidant activity (>90 %), and biocompatibility. In vivo experiments showed that COR/OHDA/GEL nanofiber membranes could promote wound tissue remodeling, collagen deposition, and granulation tissue regeneration. Western blot experiments showed that COR/OHDA/GEL nanofibrous membranes could inhibit the excessive inflammatory response of wounds through the TLR4/NF-κB signaling pathway. Therefore, COR/OHDA/GEL nanofiber membranes could promote diabetic wound healing by modulating the inflammatory response. The results showed that the designed nanofiber wound dressing is expected to provide a new strategy for treating chronic wounds.


Asunto(s)
Desoxiadenosinas , Diabetes Mellitus , Nanofibras , Humanos , Gelatina , FN-kappa B , Ácido Hialurónico , Dopamina , Receptor Toll-Like 4 , Staphylococcus aureus , Escherichia coli , Cicatrización de Heridas , Diabetes Mellitus/tratamiento farmacológico , Transducción de Señal , Antibacterianos/farmacología
11.
Int J Biol Macromol ; 259(Pt 1): 129160, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181908

RESUMEN

The healing of wounds in diabetics is commonly delayed by recurring infections and persistent inflammation at the wound site. For this reason, we conducted a study using the electrospinning technique to create nanofiber membranes consisting of polyvinylpyrrolidone/chitosan (PVP/CS) and incorporated dihydromyricetin (DHM) into them. Infrared Fourier transform spectroscopy and scanning electron microscopy were used to analyze the nanofiber membrane. Experimental results in vitro have shown that PVP/CS/DHM has exceptional properties such as hydrophilicity, porosity, water vapor transport rate, antioxidant capacity, and antibacterial activity. Moreover, our study has demonstrated that the application of PVP/CS/DHM can significantly improve wound healing in diabetic mice. After an 18-day treatment period, a remarkable wound closure rate of 88.63 ± 1.37 % was achieved. The in vivo experiments revealed that PVP/CS/DHM can promote diabetic wound healing by suppressing the activation of TLR4/MyD88/NF-κB signaling pathway and enhancing autophagy-related protein as well as CD31 and HIF-1α expression in skin tissues. This study showed that PVP/CS/DHM is a promising wound dressing.


Asunto(s)
Quitosano , Diabetes Mellitus Experimental , Flavonoles , Nanofibras , Ratones , Animales , Quitosano/química , Povidona , Diabetes Mellitus Experimental/tratamiento farmacológico , Nanofibras/química , Cicatrización de Heridas , Antibacterianos/química , Antiinflamatorios
12.
Int J Biol Macromol ; 258(Pt 2): 129118, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38163502

RESUMEN

Colitis can significantly impact daily life. This study utilized DSS to induce acute colitis in mice and examined the regulatory effect of arabinogalactan (AG). The findings demonstrated that AG intake effectively alleviated the phenotype of DSS-induced colitis in mice and protected against small intestine damage. Furthermore, AG suppressed the secretion of pro-inflammatory factors TNF-α and IL-1ß, while promoting the secretion of anti-inflammatory factor IL-10. It also inhibited the secretion of LPS in serum and MPO in colon tissue. Additionally, AG regulated the NF-κB/MAPK/PPARγ signaling pathway and inhibited the NLRP3 inflammasome signaling pathway, thereby ameliorating DSS-induced colitis inflammation in mice. AG also influenced the metabolism of short-chain fatty acids, particularly butyrate, in the intestinal tract of mice. Moreover, AG modulated and enhanced the composition of intestinal flora in mice with colitis, increasing the diversity of dominant flora and promoting the growth of beneficial bacteria. These results highlight the protective effects of arabinogalactan against colitis and its potential applications in the food industry.


Asunto(s)
Colitis Ulcerosa , Colitis , Galactanos , Microbioma Gastrointestinal , Animales , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Colitis/inducido químicamente , Transducción de Señal , FN-kappa B/metabolismo , Sulfato de Dextran/efectos adversos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
13.
Sensors (Basel) ; 24(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276324

RESUMEN

Residual current is an important monitoring quantity of a power system, and a current sensor plays an important role in detecting current. The substation environment is complex. In addition to the power frequency signal, residual current also has AC and DC components. But it is also affected by the stray magnetic field of the substation. Therefore, the accuracy of the current sensor demands higher requirements. The tunnel magnetoresistive sensor has the advantages of a stable operation, high efficiency, and energy saving, but it is easily affected by the external stray magnetic field during measurements, resulting in a large error. Therefore, this paper proposes a residual-current sensing monitoring system considering the magnetic shielding effect. The root mean square error of the magnetic shielding structure is only 0.572 mA, which can effectively reduce the influence of the external magnetic field and improve the detection accuracy. At the same time, the DC measurement error is less than 1%, the AC measurement error is less than 5%, and the hybrid AC/DC error is less than 8%. It has good response ability and can accurately detect residual current.

14.
Transl Oncol ; 39: 101802, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37839175

RESUMEN

BACKGROUND: Serpin Family H Member 1 (SERPINH1) may be involved in the regulation of occurrence and development of tumors. However, the role and mechanism of SERPINH1 in osteosarcoma remain poorly understood. The aim of this study is to investigate the expression and role of SRPINH1 in osteosarcoma and to elucidate its underlying mechanisms. METHODS: First, we examined the expression of SERPINH1 in osteosarcoma and analyzed publicly available datasets to investigate whether SERPINH1 expression was associated with the prognosis of osteosarcoma. Then we constructed SERPINH1 overexpression and knockdown systems in osteosarcoma cells, and examined the proliferation, migration and invasion ability of osteosarcoma cells after SERPINH1 expression changes using CCK-8 assay, wound healing assay and transwell invasion assay. In addition, we constructed a subcutaneous xenograft tumor model to study the function of SERPINH1 in vivo. We also examined the downstream pathways of SERPINH1 by functional analysis and performed subsequent validation. RESULTS: SERPINH1 was upregulated and associated with poor survival in patients with osteosarcoma. SERPINH1 promoted the proliferation, migration and invasion of osteosarcoma cells and promotes the growth of osteosarcoma in vivo by activating the PI3K-Akt signaling pathway. CONCLUSION: SERPINH1 partakes in the biological process of osteosarcoma as a tumor promotor and may be an emerging biomarker in osteosarcoma.

15.
Molecules ; 28(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37894518

RESUMEN

Large bone defects due to trauma, infections, and tumors are difficult to heal spontaneously by the body's repair mechanisms and have become a major hindrance to people's daily lives and economic development. However, autologous and allogeneic bone grafts, with their lack of donors, more invasive surgery, immune rejection, and potential viral transmission, hinder the development of bone repair. Hydrogel tissue bioengineered scaffolds have gained widespread attention in the field of bone repair due to their good biocompatibility and three-dimensional network structure that facilitates cell adhesion and proliferation. In addition, loading natural products with nanoparticles and incorporating them into hydrogel tissue bioengineered scaffolds is one of the most effective strategies to promote bone repair due to the good bioactivity and limitations of natural products. Therefore, this paper presents a brief review of the application of hydrogels with different gel-forming properties, hydrogels with different matrices, and nanoparticle-loaded natural products loaded and incorporated into hydrogels for bone defect repair in recent years.


Asunto(s)
Productos Biológicos , Hidrogeles , Humanos , Hidrogeles/uso terapéutico , Hidrogeles/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Ingeniería Biomédica
16.
Int J Biol Macromol ; 252: 126530, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37634780

RESUMEN

Diabetes-related ulcers are still a therapeutic problem because of their susceptibility to infection, ongoing inflammation, and diminished vascularization. The design and development of novel dressings are clinically urgent for the treatment of chronic wounds due to diabetic ulcers. In this study, we made taxifolin (TAX) loaded sodium alginate (SA)/poly(vinyl alcohol) (PVA) nanofibers for the treatment of chronic wounds. The SA/PVA/TAX nanofibers that have been created are smooth and bead-free, with good thermal stability, hydrophilicity, and mechanical properties. The release profile indicated a sustained drug release, with a cumulative release rate of 64.6 ± 3.7 % at 24 h. In vitro experiments have shown that SA/PVA/TAX has good antibacterial activity, antioxidant activity, and biocompatibility. In vivo experiments have shown that SA/PVA/TAX exhibits desirable biochemical properties and is involved in the diabetic wound healing process by promoting cell proliferation (Ki67), angiogenesis (CD31, VEGFA), and alleviating inflammation (CD68). Western blotting experiments suggest that SA/PVA/TAX may promote diabetic wound healing by inhibiting the TLR4/NF-κB/NLRP3 signaling pathway and upregulating the expression of VEGFA and PDGFA. The 16S rRNA sequencing results showed that SA/PVA/TAX increased the wound surface flora's diversity and reversed the skin microbiota's structural imbalance. Therefore, SA/PVA/TAX can promote diabetic wound healing by modulating the inflammatory response, angiogenesis, and skin flora and has the potential to be an excellent wound dressing.


Asunto(s)
Diabetes Mellitus , Nanofibras , Humanos , Alcohol Polivinílico/química , Nanofibras/química , Alginatos/química , ARN Ribosómico 16S , Úlcera , Cicatrización de Heridas , Antibacterianos/farmacología , Antibacterianos/química , Inflamación
17.
Cell Signal ; 111: 110858, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37633479

RESUMEN

As a type of non-coding RNAs, circular RNAs (circRNAs) have the ability to bind to miRNAs and regulate gene expression. Recent studies have shown that circRNAs are involved in certain pathological events. However, the expression and functional role of circTNPO1 in osteosarcoma (OS) are not yet clear. To investigate circRNAs that are differentially expressed in OS tissues and cells, circRNA microarray analysis combined with qRT-PCR was performed. The in-vitro and in-vivo functions of circTNPO1 were studied by knocking it down or overexpressing it. The binding and regulatory relationships between circTNPO1, miR-578, and WNT5A were evaluated using dual luciferase assays, RNA pull-down and rescue assays, as well as RNA immunoprecipitation (RIP). Furthermore, functional experiments were conducted to uncover the regulatory effect of the circTNPO1/miR-578/WNT5A pathway on OS progression. Cytoplasm was identified as the primary location of circTNPO1, which exhibited higher expression in OS tissues and cells compared to the corresponding controls. The overexpression of circTNPO1 was found to enhance malignant phenotypes in vitro and increase oncogenicity in vivo. Moreover, circTNPO1 was observed to sequester miR-578 in OS cells, resulting in the upregulation of WNT5A and promoting carcinoma progression. These findings indicate that circTNPO1 can contribute to the progression of OS through the miR-578/WNT5A axis. Therefore, targeting the circTNPO1/miR-578/WNT5A axis could be a promising therapeutic strategy for OS.


Asunto(s)
Neoplasias Óseas , MicroARNs , Osteosarcoma , Humanos , ARN Circular/genética , MicroARNs/genética , MicroARNs/metabolismo , Carcinogénesis/genética , Osteosarcoma/patología , Transformación Celular Neoplásica/genética , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
18.
J Orthop Surg Res ; 18(1): 538, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37507811

RESUMEN

BACKGROUND: Impaired knee stability is observed in patients with medial compartment knee osteoarthritis (OA) and varus malalignment. Although high tibial osteotomy (HTO) is widely used to treat OA-related knee varus deformity, its long-term influence on balance control in OA patients is poorly reported. This study aimed to evaluate the impact of HTO on balance control and assess its biological and functional significance. METHODS: Thirty-two patients with medial compartment knee OA as well as varus deformity who were scheduled for HTO underwent static posturographic tests one month pre- and three months as well as one year postoperatively, respectively, along with forty matched control subjects. Radiographic and clinical evaluations were synchronously carried out on patients pre- and postoperatively. RESULTS: Decreased postural sway was observed in patients one year after HTO. When compared to the control subjects, more postural sway was found in patients one month pre- and three months postoperatively. No difference was observed between the patients and control subjects one year postoperatively. The alignment and joint function of the affected knees significantly improved after HTO. CONCLUSIONS: This study revealed that HTO improves balance control in patients with knee OA and varus deformity. Correct alignment and improved joint function enhance the likelihood of normal postural stability. Hence, this intervention allows the knee joint to recover its corrective compensatory role in postural regulation and should be taken into account for managing knee OA patients.


Asunto(s)
Osteoartritis de la Rodilla , Humanos , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/cirugía , Tibia/cirugía , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/cirugía , Extremidad Inferior , Osteotomía , Resultado del Tratamiento
19.
Biomed Pharmacother ; 165: 115177, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37467650

RESUMEN

UVB radiation can damage human skin, whereas Ginsenoside Rg3, the active ingredient in red ginseng that is processed from ginseng (Panax ginseng C.A. Meyer), could inhibit UVB induced cell damage through anti-oxidation. Meanwhile, P407/CS/HA hydrogel has significant biomedical applications as carriers of drugs. However, the beneficial effects of Rg3-loaded hydrogel (Rg3-Gel) on human HaCaT keratinocytes induced by UVB have rarely been reported. In our study, Rg3 was loaded into hydrogel and the effect of Rg3-Gel against UVB­induced Hacat cells damages was determined by measuring its ability to alleviate UVB­induced elevation of oxidative stress, pro-inflammatory and apoptotic response. We found that the treatment with Rg3-Gel inhibited the generation of intracellular ROS and MDA and upregulated the expression of antioxidant enzymes SOD and GSH-Px which were inhibited by UVB exposure. Increased levels of pro-inflammatory cytokines TNF­α, COX­2, iNOS and IL­1ß following UVB irradiation were suppressed by the introduction of Rg3-Gel. Additionally, the level of Bcl-2 was decreased and the expression of Bax and Caspase3 were enhanced by Rg3-Gel treatment. In conclusion, Rg3-Gel equipped with the synergistic effect of Rg3 and hydrogel has an effective inhibitory effect on UVB-induced oxidative stress, inflammatory and apoptosis.


Asunto(s)
Células HaCaT , Hidrogeles , Humanos , Células HaCaT/metabolismo , Hidrogeles/farmacología , Línea Celular , Estrés Oxidativo , Queratinocitos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Apoptosis , Rayos Ultravioleta/efectos adversos
20.
Molecules ; 28(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37175143

RESUMEN

The panax genus is a widely used medicinal plant with good biological activity. As one of the main active components of the Panax genus, polysaccharides have various pharmacological effects. This review summarizes the latest research reports on ginseng, American ginseng, and Panax notoginseng polysaccharides and compares the differences in extraction, isolation and purification, structural characteristics, and biological activities. The current research mainly focuses on ginseng polysaccharides, and the process of extraction, isolation, and structure analysis of each polysaccharide is roughly the same. Modern pharmacological studies have shown that these polysaccharides have antioxidants, antitumor, immunomodulatory, antidiabetic, intestinal protection, skin repair, and other biological activities. This review provides new insights into the differences between the three kinds of ginseng polysaccharides which will help to further study the medicinal value of ginseng in traditional Chinese medicine.


Asunto(s)
Panax notoginseng , Panax , Plantas Medicinales , Panax/química , Polisacáridos/farmacología , Polisacáridos/química , Antioxidantes/farmacología , Antioxidantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA