Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Wei Sheng Yan Jiu ; 53(4): 646-655, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39155235

RESUMEN

OBJECTIVE: To develop a method which is used for rapid determination of 16 kinds of polycyclic aromatic hydrocarbons(PAHs) and 16 kinds of phthalates(PAEs) in tap water by stirring rod adsorption extraction(SBSE) combined with gas chromatography-mass spectrometry(GC-MS). METHODS: The twister mixing rod coated with polydimethylsiloxane(PDMS) and ethylene glycol-polydimethylsiloxane(EG-silicone) was used to enrich analyte from 50 mL tap water. The twister mixing rod coated with EG-silicone was directly placed into the sample bottle containing 50 mL of tap water, while fixing the PDMS stir bar on the inner wall of the sample bottle and immersing it in the liquid. Add 5%(W/V) sodium chloride to the sample bottle, followed by adding 5% methanol. Stir at room temperature for 2 hours for extraction. Next, remove the mixing stick and dry its surface. The pre-prepared SBSE was analyzed by TD-GC/MS, with the optimized thermal desorption conditions: desorption temperature 275 ℃, desorption time 15 min, cryofocusing temperature-40 ℃. RESULTS: Regression equations revealed acceptable linearity(correlation coefficients >0.986) across the working-standard range from 200-2000 ng/L for the 32 analytes. The limits of detection(LODs)were further evaluated were from 1.13-121 ng/L. With the optimized pretreatment method, the spiked recoveries of tap samples(200 and 2000 ng/L)were in the range of 62.5%-98.4% with the relative standard deviations(RSDs) of 3.5%-25.3%. CONCLUSION: The established method can realize the rapid detection of high throughput in the laboratory, it is simple, convenient to operate, and the extraction and analysis time is short.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Ácidos Ftálicos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Cromatografía de Gases y Espectrometría de Masas/métodos , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis , Ácidos Ftálicos/análisis , Adsorción , Agua Potable/análisis , Agua Potable/química
2.
bioRxiv ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39071371

RESUMEN

The mesoscope has emerged as a powerful imaging tool in biomedical research, yet its high cost and low resolution have limited its broader application. Here, we introduce the Omni-Mesoscope, a cost-effective high-spatial-temporal, multimodal, and multiplex mesoscopic imaging platform built from cost-efficient off-the-shelf components. This system uniquely merges the capabilities of quantitative phase microscopy to capture live-cell dynamics over a large cell population with highly multiplexed fluorescence imaging for comprehensive molecular characterization. This integration facilitates simultaneous tracking of live-cell morphodynamics across thousands of cells, alongside high-content molecular analysis at the single-cell level. Furthermore, the Omni-Mesoscope offers a mesoscale field of view of approximately 5 mm 2 with a high spatial resolution down to 700 nm, enabling the capture of information-rich images with detailed sub-cellular features. We demonstrate such capability in delineating molecular characteristics underlying rare dynamic cellular phenomena, such as cancer cell responses to chemotherapy and the emergence of polyploidy in drug-resistant cells. Moreover, the cost-effectiveness and the simplicity of our Omni-Mesoscope democratizes mesoscopic imaging, making it accessible across diverse biomedical research fields. To further demonstrate its versatility, we integrate expansion microscopy to enhance 3D volumetric super-resolution imaging of thicker tissues, opening new avenues for biological exploration at unprecedented scales and resolutions.

3.
Sensors (Basel) ; 24(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38931716

RESUMEN

Aiming at the problems of the poor robustness and universality of traditional contour matching algorithms in engineering applications, a method for improving the surface defect detection of industrial products based on contour matching algorithms is detailed in this paper. Based on the image pyramid optimization method, a three-level matching method is designed, which can quickly obtain the candidate pose of the target contour at the top of the image pyramid, combining the integral graph and the integration graph acceleration strategy based on weak classification. It can quickly obtain the rough positioning and rough angle of the target contour, which greatly improves the performance of the algorithm. In addition, to solve the problem that a large number of duplicate candidate points will be generated when the target candidate points are expanded, a method to obtain the optimal candidate points in the neighborhood of the target candidate points is designed, which can guarantee the matching accuracy and greatly reduce the calculation amount. In order to verify the effectiveness of the algorithm, functional test experiments were designed for template building function and contour matching function, including uniform illumination condition, nonlinear condition and contour matching detection under different conditions. The results show that: (1) Under uniform illumination conditions, the detection accuracy can be maintained at about 93%. (2) Under nonlinear illumination conditions, the detection accuracy can be maintained at about 91.84%. (3) When there is an external interference source, there will be a false detection or no detection, and the overall defect detection rate remains above 94%. It is verified that the proposed method can meet the application requirements of common defect detection, and has good robustness and meets the expected functional requirements of the algorithm, providing a strong technical guarantee and data support for the design of embedded image sensors in the later stage.

4.
Microb Pathog ; 192: 106682, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38750776

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) causes a highly transmissible disease of significant concern in the pig industry. Previous studies have demonstrated that the XM-2020 strain (a lineage 1.8 PRRSV IA/2012/NADC30) can induce special hemorrhagic injury in the small intestines. However, the specific mechanism underlying this injurious effect remains incompletely understood. In this study, we examined the pathogenic properties of XM-2020 and YC-2020 strains (a lineage 1.5 PRRSV IA/2014/NADC34) in piglets. Animal pathogenic tests revealed that with either Lineage 1 PRRSVs strains XM-2020 or YC-2020 demonstrated pronounced intestinal hemorrhage and suppression of peripheral immunological organs, comparing to JXA1 infection. Transcriptome analysis of diseased small intestines unveiled that PRRSV infection stimulated oxidative and inflammatory reactions. Remarkably, we also observed activation of the complement system alongside a notable down-regulation of complement and coagulation cascade pathways in the Lineage 1 PRRSVs infection group. Based on these findings, we propose that the primary mechanism driving the hemorrhagic injury of the small intestine caused by Lineage 1 PRRSVs is the suppression of complement and coagulation cascades resulting from immunosuppression. This discovery deepens our understanding of the pathogenicity of PRRSV in the small intestine and provides promising ways out for the development of innovative strategies aimed at controlling PRRSV.


Asunto(s)
Proteínas del Sistema Complemento , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Porcinos , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/patogenicidad , Síndrome Respiratorio y de la Reproducción Porcina/virología , Síndrome Respiratorio y de la Reproducción Porcina/patología , Coagulación Sanguínea , Intestino Delgado/virología , Intestino Delgado/patología , Intestinos/virología , Intestinos/patología , Perfilación de la Expresión Génica , Hemorragia
5.
J Inflamm Res ; 17: 2681-2696, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38707956

RESUMEN

Purpose: Management of severe diabetic foot ulcers (DFUs) remains challenging. Tibial cortex transverse transport (TTT) facilitates healing and limb salvage in patients with recalcitrant DFUs. However, the underlying mechanism is largely unknown, necessitating the establishment of an animal model and mechanism exploration. Methods: Severe DFUs were induced in rats, then assigned to TTT, sham, or control groups (n=16/group). The TTT group underwent a tibial corticotomy, with 6 days each of medial and lateral transport; the sham group had a corticotomy without transport. Ulcer healing was assessed through Laser Doppler, CT angiography, histology, and immunohistochemistry. Serum HIF-1α, PDGF-BB, SDF-1, and VEGF levels were measured by ELISA. Results: The TTT group showed lower percentages of wound area, higher dermis thickness (all p < 0.001 expect for p = 0.001 for TTT vs Sham at day 6) and percentage of collagen content (all p < 0.001) than the other two groups. The TTT group had higher perfusion and vessel volume in the hindlimb (all p < 0.001). The number of CD31+ cells (all p < 0.001) and VEGFR2+ cells (at day 6, TTT vs Control, p = 0.001, TTT vs Sham, p = 0.006; at day 12, TTT vs Control, p = 0.003, TTT vs Sham, p = 0.01) were higher in the TTT group. The activity of HIF-1α, PDGF-BB, and SDF-1 was increased in the TTT group (all p < 0.001 except for SDF-1 at day 12, TTT vs Sham, p = 0.005). The TTT group had higher levels of HIF-1α, PDGF-BB, SDF-1, and VEGF in serum than the other groups (all p < 0.001). Conclusion: TTT enhanced neovascularization and perfusion at the hindlimb and accelerated healing of the severe DFUs. The underlying mechanism is related to HIF-1α-induced angiogenesis.

6.
Wei Sheng Yan Jiu ; 53(2): 316-331, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38604970

RESUMEN

OBJECTIVE: To establishe an analysis and identification method for 2-methylisoborneol(2-MIB) and geosmin(GSM) in water using purge and trap-gas chromatography-mass spectrometry. METHODS: The samples were enriched and analyzed using a purge and trap system, followed by the separation on a DB-624(30 m×0.25 mm, 1.4 µm) chromatographic column. Quantification was performed using gas chromatography-mass spectrometry with the selected ion monitoring and internal standard calibration. RESULTS: The calibration curves for 2-MIB and GSM showed an excellent linearity in the range of 1 to 100 ng/L with R~2 values greater than 0.999. The detection limit and quantification limit for both 2-MIB and GSM were 0.33 ng/L and 1.0 ng/L, respectively. Spike recovery experiments were further carried on the source water and drinking water at three concentration levels. It showed that the average recoveries were from 82.0% to 111.0% for 2-MIB while 84.0% to 110% for GSM. Additionally, the test precision of 2-MIB and GSM ranged from 1.9% to 7.3% and 1.9% to 5.0%(n=6), respectively. The analysis of multiple samples including the local source water, treated water and distribution network water confirmed the existence of 2-MIB and GSM. CONCLUSION: Compared to the national standard(GB/T 5750.8-2023), the proposed method enables fully automated sample introduction and analysis without the extra pre-treatment. It provides the advantages of simplicity, good repeatability and high accuracy.


Asunto(s)
Agua Potable , Naftoles , Contaminantes Químicos del Agua , Agua/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Agua Potable/análisis , Canfanos/análisis , Contaminantes Químicos del Agua/análisis , Odorantes/análisis
7.
Bull Entomol Res ; 114(2): 159-171, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38563228

RESUMEN

The fall armyworm (FAW) Spodoptera frugiperda (J.E. Smith) is a highly damaging invasive omnivorous pest that has developed varying degrees of resistance to commonly used insecticides. To investigate the molecular mechanisms of tolerance to tetraniliprole, spinetoram, and emamectin benzoate, the enzyme activity, synergistic effect, and RNA interference were implemented in S. frugiperda. The functions of cytochrome P450 monooxygenase (P450) in the tolerance to tetraniliprole, spinetoram, and emamectin benzoate in S. frugiperda was determined by analysing changes in detoxification metabolic enzyme activity and the effects of enzyme inhibitors on susceptibility to the three insecticides. 102 P450 genes were screened via transcriptome and genome, of which 67 P450 genes were differentially expressed in response to tetraniliprole, spinetoram, and emamectin benzoate and validated by quantitative real-time PCR. The expression patterns of CYP9A75, CYP340AA4, CYP340AX8v2, CYP340L16, CYP341B15v2, and CYP341B17v2 were analysed in different tissues and at different developmental stages in S. frugiperda. Silencing CYP340L16 significantly increased the susceptibility of S. frugiperda to tetraniliprole, spinetoram, and emamectin benzoate. Furthermore, knockdown of CYP340AX8v2, CYP9A75, and CYP341B17v2 significantly increased the sensitivity of S. frugiperda to tetraniliprole. Knockdown of CYP340AX8v2 and CYP340AA4 significantly increased mortality of S. frugiperda to spinetoram. Knockdown of CYP9A75 and CYP341B15v2 significantly increased the susceptibility of S. frugiperda to emamectin benzoate. These results may help to elucidate the mechanisms of tolerance to tetraniliprole, spinetoram and emamectin benzoate in S. frugiperda.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Insecticidas , Ivermectina , Spodoptera , Animales , Spodoptera/genética , Spodoptera/metabolismo , Spodoptera/efectos de los fármacos , Ivermectina/análogos & derivados , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Insecticidas/farmacología , Larva/crecimiento & desarrollo , Larva/efectos de los fármacos , Larva/genética , Resistencia a los Insecticidas/genética , Inactivación Metabólica , Interferencia de ARN , Macrólidos
8.
Molecules ; 29(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474608

RESUMEN

Zn-doped MnCO3/carbon sphere (Zn-doped MnCO3/CS) composites were synthesized using a simple hydrothermal procedure. Among various samples (ZM-50, ZM-05, and ZMC-0), the ternary Zn-doped MnCO3/CS (ZMC-2) catalyst demonstrated excellent visible light-induced photocatalytic activity. This improvement comes from the Zn addition and the conductive CS, which facilitate electron movement and charge transport. The catalyst exhibited efficient degradation of methylene blue (MB) over a wide pH range, achieving a removal efficiency of 99.6% under visible light. Radical trapping experiments suggested that •OH and •O2- played essential roles in the mechanism of organic pollutant degradation. Moreover, the catalyst maintained good degradation performance after five cycles. This study offers valuable perspectives into the fabrication of carbon-based composites with promising photocatalytic activity.

9.
Sci Transl Med ; 16(732): eabo0049, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38295184

RESUMEN

Proteins are densely packed in cells and tissues, where they form complex nanostructures. Expansion microscopy (ExM) variants have been used to separate proteins from each other in preserved biospecimens, improving antibody access to epitopes. Here, we present an ExM variant, decrowding expansion pathology (dExPath), that can expand proteins away from each other in human brain pathology specimens, including formalin-fixed paraffin-embedded (FFPE) clinical specimens. Immunostaining of dExPath-expanded specimens reveals, with nanoscale precision, previously unobserved cellular structures, as well as more continuous patterns of staining. This enhanced molecular staining results in observation of previously invisible disease marker-positive cell populations in human glioma specimens, with potential implications for tumor aggressiveness. dExPath results in improved fluorescence signals even as it eliminates lipofuscin-associated autofluorescence. Thus, this form of expansion-mediated protein decrowding may, through improved epitope access for antibodies, render immunohistochemistry more powerful in clinical science and, perhaps, diagnosis.


Asunto(s)
Encéfalo , Nanoestructuras , Humanos , Inmunohistoquímica , Anticuerpos Monoclonales , Epítopos , Formaldehído
10.
J Vis Exp ; (200)2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37870360

RESUMEN

The nanoscale imaging of biological specimens can improve the understanding of disease pathogenesis. In recent years, expansion microscopy (ExM) has been demonstrated to be an effective and low-cost alternative to optical super-resolution microscopy. However, it has been limited by the need for specific and often custom anchoring agents to retain different biomolecule classes within the gel and by difficulties with expanding standard clinical sample formats, such as formalin-fixed paraffin-embedded tissue, especially if larger expansion factors or preserved protein epitopes are desired. Here, we describe Magnify, a new ExM method for robust expansion up to 11-fold in a wide array of tissue types. By using methacrolein as the chemical anchor between the tissue and gel, Magnify retains multiple biomolecules, such as proteins, lipids, and nucleic acids, within the gel, thus allowing the broad nanoscale imaging of tissues on conventional optical microscopes. This protocol describes best practices to ensure robust and crack-free tissue expansion, as well as tips for handling and imaging highly expanded gels.


Asunto(s)
Microscopía , Ácidos Nucleicos , Microscopía/métodos , Proteínas , Geles
11.
Nanomaterials (Basel) ; 13(17)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37686947

RESUMEN

The design and fabrication of low-cost catalysts for highly efficient oxygen reduction are of paramount importance for various renewable energy-related technologies, such as fuel cells and metal-air batteries. Herein, we report the synthesis of Fe3N nanoparticle-encapsulated N-doped carbon nanotubes on the surface of a flexible biomass-derived carbon cloth (Fe3N@CNTs/CC) via a simple one-step carbonization process. Taking advantage of its unique structure, Fe3N@CNTs/CC was employed as a self-standing electrocatalyst for oxygen reduction reaction (ORR) and possessed high activity as well as excellent long-term stability and methanol resistance in alkaline media. Remarkably, Fe3N@CNT/CC can directly play the role of both a gas diffusion layer and an electrocatalytic cathode in a zinc-air battery without additional means of catalyst loading, and it displays higher open-circuit voltage, power density, and specific capacity in comparison with a commercial Pt/C catalyst. This work is anticipated to inspire the design of cost-effective, easily prepared, and high-performance air electrodes for advanced electrochemical applications.

12.
Adv Sci (Weinh) ; 10(30): e2302249, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37658522

RESUMEN

Super-resolution optical imaging tools are crucial in microbiology to understand the complex structures and behavior of microorganisms such as bacteria, fungi, and viruses. However, the capabilities of these tools, particularly when it comes to imaging pathogens and infected tissues, remain limited. MicroMagnify (µMagnify) is developed, a nanoscale multiplexed imaging method for pathogens and infected tissues that are derived from an expansion microscopy technique with a universal biomolecular anchor. The combination of heat denaturation and enzyme cocktails essential is found for robust cell wall digestion and expansion of microbial cells and infected tissues without distortion. µMagnify efficiently retains biomolecules suitable for high-plex fluorescence imaging with nanoscale precision. It demonstrates up to eightfold expansion with µMagnify on a broad range of pathogen-containing specimens, including bacterial and fungal biofilms, infected culture cells, fungus-infected mouse tone, and formalin-fixed paraffin-embedded human cornea infected by various pathogens. Additionally, an associated virtual reality tool is developed to facilitate the visualization and navigation of complex 3D images generated by this method in an immersive environment allowing collaborative exploration among researchers worldwide. µMagnify is a valuable imaging platform for studying how microbes interact with their host systems and enables the development of new diagnosis strategies against infectious diseases.


Asunto(s)
Bacterias , Microscopía , Humanos , Animales , Ratones , Microscopía/métodos , Imagen Óptica
15.
Arch Virol ; 168(8): 205, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37436532

RESUMEN

In this study, an NADC34-like strain of porcine reproductive and respiratory syndrome virus (PRRSV), YC-2020, was isolated from a pig farm in Yuncheng, Shanxi Province, China. Phylogenetic and molecular evolutionary analysis showed that the genome sequence of YC-2020 was very similar to those of NADC34-like PRRSV strains in the ORF2-7 region. However, it was more closely related to NADC30-like PRRSV and highly pathogenic (HP) PRRSV in the NSP2 and NSP3-9 coding regions, respectively, suggesting that recombination had occurred between viruses belonging to lineages 1 and 8. Piglets infected with YC-2020 exhibited mild clinical signs, but they had severe histopathological lesions in their lungs. These findings reveal novel genetic and pathogenic features of this isolate.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Porcinos , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Síndrome Respiratorio y de la Reproducción Porcina/genética , Filogenia , Genoma Viral , China , Variación Genética
16.
Pestic Biochem Physiol ; 192: 105413, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37105639

RESUMEN

MicroRNAs (miRNAs) are known to be important post-transcriptional regulators of gene expression and have been shown to be associated with insecticide resistance in insects. In this research, we show that a miRNA, PC-5p-30_205949, is involved in triflumezopyrim susceptibility via regulating expressive abundance of cytochrome P450 CYP419A1 and ATP-binding cassette transporters ABCG23 in the small brown planthopper (SBPH), Laodelphax striatellus (Fallén). Triflumezopyrim treatment significantly reduced the abundance of PC-5p-30_205949, feeding of agomir-PC-5p-30_205949 significantly increased the sensitivity of SBPH to triflumezopyrim, and its spatiotemporal expression profiles showed that PC-5p-30_205949 were expressed at all developmental stages and were highly expressed in head tissue. By software prediction and dual luciferase reporter assay, the target genes of PC-5p-30_205949 were identified as two detoxification metabolism genes CYP419A1 and ABCG23. The relative expressions of CYP419A1 and ABCG23 were significantly up-regulated after 24 h, 48 h and 72 h with triflumezopyrim exposure. CYP419A1 was highly expressed in the 4th-instar nymphs and male adults, with the highest expression level in fat body. ABCG23 was highly expressed in female adults, and had the highest expression in head. Furthermore, silencing of CYP419A1 and ABCG23 by RNA interference significantly increased the mortality of SBPH to triflumezopyrim, and molecular docking showed that CYP419A1 and ABCG23 could stably bind to triflumezopyrim with binding free energies of -171.5622 and - 103.3402 kcal mol-1, respectively. These results suggest that SBPH has a strategy to enhance the resistance to triflumezopyrim by attenuating the expression of PC-5P-30_205949, thereby activating the detoxification metabolic pathway by targeting CYP419A1 and ABCG23.


Asunto(s)
Hemípteros , MicroARNs , Animales , MicroARNs/genética , Simulación del Acoplamiento Molecular , Interferencia de ARN , Hemípteros/genética , Hemípteros/metabolismo
18.
Res Sq ; 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36945526

RESUMEN

Super-resolution optical imaging tools are crucial in microbiology to understand the complex structures and behavior of microorganisms such as bacteria, fungi, and viruses. However, the capabilities of these tools, particularly when it comes to imaging pathogens and infected tissues, remain limited. We developed µMagnify, a nanoscale multiplexed imaging method for pathogens and infected tissues that are derived from an expansion microscopy technique with a universal biomolecular anchor. We formulated an enzyme cocktail specifically designed for robust cell wall digestion and expansion of microbial cells without distortion while efficiently retaining biomolecules suitable for high-plex fluorescence imaging with nanoscale precision. Additionally, we developed an associated virtual reality tool to facilitate the visualization and navigation of complex three-dimensional images generated by this method in an immersive environment allowing collaborative exploration among researchers around the world. µMagnify is a valuable imaging platform for studying how microbes interact with their host systems and enables development of new diagnosis strategies against infectious diseases.

19.
Nat Biotechnol ; 41(6): 858-869, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36593399

RESUMEN

Expansion microscopy enables nanoimaging with conventional microscopes by physically and isotropically magnifying preserved biological specimens embedded in a crosslinked water-swellable hydrogel. Current expansion microscopy protocols require prior treatment with reactive anchoring chemicals to link specific labels and biomolecule classes to the gel. We describe a strategy called Magnify, which uses a mechanically sturdy gel that retains nucleic acids, proteins and lipids without the need for a separate anchoring step. Magnify expands biological specimens up to 11 times and facilitates imaging of cells and tissues with effectively around 25-nm resolution using a diffraction-limited objective lens of about 280 nm on conventional optical microscopes or with around 15 nm effective resolution if combined with super-resolution optical fluctuation imaging. We demonstrate Magnify on a broad range of biological specimens, providing insight into nanoscopic subcellular structures, including synaptic proteins from mouse brain, podocyte foot processes in formalin-fixed paraffin-embedded human kidney and defects in cilia and basal bodies in drug-treated human lung organoids.


Asunto(s)
Riñón , Microscopía , Ratones , Animales , Humanos , Microscopía/métodos
20.
Methods Mol Biol ; 2595: 239-250, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36441467

RESUMEN

MicroRNAs (miRNAs) are endogenous non-coding small RNAs, which regulate gene expression at the post-transcriptional level. A large number of studies have revealed that they play key roles in diverse life activities, such as growth and development. In the last decade, deep sequencing technology has generated substantial small RNA sequencing (sRNA-Seq) data. Meanwhile, numerous tools have been developed to identify miRNAs from these sRNA-Seq data, resulting in a surge of miRNA annotations. Among these tools, the series of miRDeep-P and miRDeep-P2 have been widely used in plant miRNA annotation. Here, we employed miRDeep-P2 to demonstrate the plant miRNA annotation processes step by step using the deep sequencing data.


Asunto(s)
MicroARNs , MicroARNs/genética , Análisis de Secuencia de ARN , Tecnología , Secuenciación del Exoma , Secuenciación de Nucleótidos de Alto Rendimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA