Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Mol Neurobiol ; 60(10): 5915-5930, 2023 Oct.
Article En | MEDLINE | ID: mdl-37380822

MOTS-c is a 16-amino acid mitochondrial-derived peptide reported to be involved in regulating energy metabolism. However, few studies have reported the role of MOTS-c on neuron degeneration. In this study, it was aimed to explore the action of MOTS-c in rotenone-induced dopaminergic neurotoxicity. In an in vitro study, it was observed that rotenone could influence the expression and localization of MOTS-c significantly in PC12 cells, with more MOTS-c translocating into the nucleus from mitochondria. Further study showed that the translocation of MOTS-c from the mitochondria into the nucleus could directly interact with Nrf2 to regulate HO-1 and NQO1 expression in PC12 cells exposed to rotenone, which had been suggested to be involved in the antioxidant defense system. In vivo and in vitro experiments demonstrated that exogenous MOTS-c pretreatment could protect PC12 cells and rats from mitochondrial dysfunction and oxidative stress induced by rotenone. Moreover, MOTS-c pretreatment significantly decreased the loss of TH, PSD95, and SYP protein expression in the striatum of rats exposed to rotenone. In addition, MOTS-c pretreatment could clearly alleviate the downregulated expression of Nrf2, HO-1, and NQO1, as well as the upregulated Keap1 protein expression in the striatum of rotenone-treated rats. Taken together, these findings suggested that MOTS-c could directly interact with Nrf2 to activate the Nrf2/HO-1/NQO1 signal pathway to defend the antioxidant system to prevent dopaminergic neurons from rotenone-induced oxidative stress and neurotoxicity in vitro and in vivo.


Antioxidants , Rotenone , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Rotenone/toxicity , Rotenone/metabolism , Dopaminergic Neurons/metabolism , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Oxidative Stress , Mitochondria/metabolism
2.
Toxicol Mech Methods ; 33(4): 271-278, 2023 May.
Article En | MEDLINE | ID: mdl-36106344

Using sulfur mustard analog 2-chloroethyl ethyl sulfide (CEES), we established an in vitro model by poisoning cultured immortalized human bronchial epithelial cells. Nile Red staining revealed lipids accumulated 24 h after a toxic dose of CEES (0.9 mM). Lipidomics analysis showed most of the increased lipids were triglycerides (TGs), and the increase in TGs was further confirmed using a Triglyceride-Glo™ Assay kit. Protein and mRNA levels of DGAT1, an important TG biogenesis enzyme, were increased following 0.4 mM CEES exposure. Under higher dose CEES (0.9 mM) exposure, protein and mRNA levels of PPARγ coactivator-1ɑ (PGC-1ɑ), a well-known transcription factor that regulates fatty acid oxidation, were decreased. Finally, application with DGAT1 inhibitor A 922500 or PGC1ɑ agonist ZLN005 was able to block the CEES-induced TGs increase. Overall, our dissection of CEES-induced TGs accumulation provides new insight into energy metabolism dysfunction upon vesicant exposure.HIGHLIGHTSIn CEES (0.9 mM)-injured cells:Triglycerides (TGs) were abundant in the accumulated lipids.Expression of DGAT1, not DGAT2, was increased.Expression of PGC1ɑ, not PGC1ß, was reduced.DGAT1 inhibitor or PGC1ɑ agonist blocked the CEES-mediated increase in TGs.


Mustard Gas , Humans , Diacylglycerol O-Acyltransferase/genetics , Epithelial Cells/drug effects , Lipids , Mustard Gas/analogs & derivatives , Mustard Gas/toxicity , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , RNA, Messenger , Sulfides
3.
Toxicol Lett ; 354: 14-23, 2022 Jan 01.
Article En | MEDLINE | ID: mdl-34757179

Respiratory system injury is the main cause of mortality for nitrogen mustard (NM)-induced damage. Previous studies indicate that reactive oxygen species (ROS) participates in NM-mediated respiratory injuries, but the detailed mechanism is not quite clear. Human bronchial epithelial cell lines 16HBE and BEAS-2B were treated with HN2, a type of NM. In detail, it was shown that HN2 treatment induced impaired cell viability, excessive mitochondrial ROS production and enhanced cellular apoptosis in bronchial epithelial cells. Moreover, impaired Sirt3/SOD2 axis was observed upon HN2 treatment, with decreased Sirt3 and increased acetylated SOD2 expression levels. Sirt3 overexpression partially ameliorated HN2-induced cell injury. Meanwhile, vitamin D3 treatment partially attenuated HN2-induced apoptosis and improved the mitochondrial functions upon HN2 intervention. In addition, HN2 exposure decreased VDR expression, thus inhibiting the Nrf2 phosphorylation and Sirt3 activation. Inhibition of Nrf2 or Sirt3 could decrease the protective effects of vitamin D3 and enhance mitochondrial ROS production via modulating mitochondrial redox balance. In conclusion, impaired VDR/Nrf2/Sirt3 axis contributed to NM-induced apoptosis, while vitamin D3 supplementation provides protective effects via the activation of VDR and the improvement of mitochondrial functions. This study provides novel mechanism and strategy for NM exposure-induced pulmonary injuries.


Apoptosis/drug effects , Bronchi/drug effects , Cholecalciferol/pharmacology , Epithelial Cells/drug effects , Nitrogen Mustard Compounds/toxicity , Protective Agents/pharmacology , Respiratory System/drug effects , Cells, Cultured/drug effects , Humans , Respiratory System/physiopathology
4.
Toxicol Res (Camb) ; 10(5): 1034-1044, 2021 Oct.
Article En | MEDLINE | ID: mdl-34733488

Sulfur mustard (a type of vesicant) can directly damage lung bronchial epithelium via aerosol inhalation, and prevalent cell death is an early event that obstructs the respiratory tract. JNK/c-Jun is a stress response pathway, but its role in cell death of the injured cells is not clear. Here, we report that JNK/c-Jun was activated in immortalized human bronchial epithelial (HBE) cells exposed to a lethal dose (20 µM) of nitrogen mustard (NM, a sulfur mustard analog). c-Jun silencing using small-interfering RNA (siRNA) rendered the cells resistant to NM-mediated cell death by blocking poly(ADP-ribose) polymerase 1 (PARP1) cleavage and DNA fragmentation. In addition, the transduction of upstream extrinsic (Fasl-Fas-caspase-8) and intrinsic (loss of Bcl-2 and mitochondrial membrane potential, ΔΨm) apoptosis pathways, as well as phosphorylated (p)-H2AX (Ser139), an epigenetic marker contributing to DNA fragmentation and PARP1 activity, was partially suppressed. To mimic the detachment of cells by NM, HBE cells were trypsinized and seeded on culture plates that were pre-coated with poly-HEMA to prevent cell adhesion. The JNK/c-Jun pathway was found to be activated in the detached cells. In conclusion, our results indicate that JNK/c-Jun pathway activation is necessary for NM-caused HBE cell death and further suggest that c-Jun silencing may be a potential approach to protect HBE cells from vesicant damage.

5.
Clin Transl Med ; 11(2): e312, 2021 02.
Article En | MEDLINE | ID: mdl-33634989

Nitrogen mustard (NM) causes severe skin injury with an obvious inflammatory response, which is lack of effective and targeted therapies. Vitamin D3 (VD3) has excellent anti-inflammatory properties and is considered as a potential candidate for the treatment of NM-induced dermal toxicity; however, the underlying mechanisms are currently unclear. Cyclooxygenase-2 (COX2; a widely used marker of skin inflammation) plays a key role in NM-induced cutaneous inflammation. Herein, we initially confirmed that NM markedly promoted COX2 expression in vitro and in vivo. NM also increased NOD-like receptor family pyrin domain containing 3 (NLRP3) expression, caspase-1 activity, and interleukin-1ß (IL-1ß) release. Notably, treatment with a caspase-1 inhibitor (zYVAD-fmk), NLRP3 inhibitor (MCC950), and NLRP3 or caspase-1 siRNA attenuated NM-induced NLRP3 inflammasome activation, with subsequent suppression of COX2 expression and IL-1ß release in keratinocytes. Meanwhile, NM increased mitochondrial reactive oxygen species (mtROS) and decreased manganese superoxide dismutase 2 (SOD2) and sirtuin 3 (SIRT3) activities. Mito-TEMPO (a mtROS scavenger) ameliorated NM-caused NLRP3 inflammasome activation in keratinocytes. Moreover, VD3 improved SIRT3 and SOD2 activities, decreased mtROS contents, inactivated the NLRP3 inflammasome, and attenuated cutaneous inflammation induced by NM in vitro and in vivo. The beneficial activity of VD3 against NM-triggered cutaneous inflammation was enhanced by the inhibitors of IL-1, mtROS, NLRP3, caspase-1, and NLRP3 or caspase-1 siRNAs, which was abolished in SIRT3 inhibitor or SIRT3 siRNA-treated keratinocytes and skins from SIRT3-/- mice. In conclusion, VD3 ameliorated NM-induced cutaneous inflammation by inactivating the NLRP3 inflammasome, which was partially mediated through the SIRT3-SOD2-mtROS signaling pathway.


Dermatitis, Contact/etiology , Inflammasomes/drug effects , Mechlorethamine/toxicity , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Sirtuin 3/metabolism , Superoxide Dismutase/metabolism , Vitamin D/therapeutic use , Animals , Dermatitis, Contact/drug therapy , Female , HaCaT Cells/drug effects , HaCaT Cells/metabolism , Humans , Inflammasomes/physiology , Keratinocytes/drug effects , Keratinocytes/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/drug effects , Mitochondria/metabolism
6.
Signal Transduct Target Ther ; 6(1): 29, 2021 01 25.
Article En | MEDLINE | ID: mdl-33487631

Nitrogen mustard (NM) causes severe vesicating skin injury, which lacks effective targeted therapies. The major limitation is that the specific mechanism of NM-induced skin injury is not well understood. Recently, autophagy has been found to play important roles in physical and chemical exposure-caused cutaneous injuries. However, whether autophagy contributes to NM-induced dermal toxicity is unclear. Herein, we initially confirmed that NM dose-dependently caused cell death and induced autophagy in keratinocytes. Suppression of autophagy by 3-methyladenine, chloroquine, and bafilomycin A1 or ATG5 siRNA attenuated NM-induced keratinocyte cell death. Furthermore, NM increased transient receptor potential vanilloid 1 (TRPV1) expression, intracellular Ca2+ content, and the activities of Ca2+/calmodulin-dependent kinase kinase ß (CaMKKß), AMP-activated protein kinase (AMPK), unc-51-like kinase 1 (ULK1), and mammalian target of rapamycin (mTOR). NM-induced autophagy in keratinocytes was abolished by treatment with inhibitors of TRPV1 (capsazepine), CaMKKß (STO-609), AMPK (compound C), and ULK1 (SBI-0206965) as well as TRPV1, CaMKKß, and AMPK siRNA transfection. In addition, an mTOR inhibitor (rapamycin) had no significant effect on NM-stimulated autophagy or cell death of keratinocytes. Finally, the results of the in vivo experiment in NM-treated skin tissues were consistent with the findings of the in vitro experiment. In conclusion, NM-caused dermal toxicity by overactivating autophagy partially through the activation of TRPV1-Ca2+-CaMKKß-AMPK-ULK1 signaling pathway. These results suggest that blocking TRPV1-dependent autophagy could be a potential treatment strategy for NM-caused cutaneous injury.


Autophagy-Related Protein 5/genetics , Autophagy/genetics , Skin Diseases/genetics , TRPV Cation Channels/genetics , AMP-Activated Protein Kinase Kinases/genetics , Adenine/analogs & derivatives , Adenine/pharmacology , Animals , Autophagy-Related Protein-1 Homolog/genetics , Blister/genetics , Blister/pathology , Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics , Cell Death/drug effects , Chloroquine/pharmacology , Humans , Keratinocytes/drug effects , Keratinocytes/pathology , Macrolides/pharmacology , Mechlorethamine/toxicity , Mice , RNA, Small Interfering/genetics , Sirolimus/pharmacology , Skin/drug effects , Skin/injuries , Skin/pathology , Skin Diseases/chemically induced , Skin Diseases/drug therapy , Skin Diseases/pathology , TOR Serine-Threonine Kinases/genetics
7.
Toxicology ; 389: 67-73, 2017 08 15.
Article En | MEDLINE | ID: mdl-28720507

N-methyl-2,2-di(chloroethyl)amine (HN2) is a kind of bifunctional alkyltating agent, which can react with nucleophilic groups in DNA and/or protein to form HN2-bridged crosslinking of target molecules, such as DNA-protein crosslinkings (DPC). O6-methylguanine-DNA methyltransferase (MGMT) is a DNA damage repair enzyme which solely repairs alkyl adduct on DNA directly. However, MGMT was detected to act as a protein cross-linked with DNA via alkylation in presence of HN2, and unexpectedly turned into a DNA damage enhancer in the form of MGMT-DNA cross-link (mDPC). Present study aimed to explore the possible ways to lessen the incorporation of MGMT into DPC as well as to save it for DNA repair. To find out the influencing factors of mDPC formation and cleavage, human bronchial epithelial cell line 16HBE was exposed to HN2 and the factors related with MGMT expression and degradation were investigated. When c-Myc, a negative transcriptional factor of MGMT was inhibited by 10058-F4, MGMT expression and mDPC formation were increased, and more γ-H2AX was also detected. Sustained treatment with O6BG, a specific exogenous substrate and depleter of MGMT, could reduce the level of MGMT and mDPC formation. In contrast, a transient 1h pre-treatment of O6GB before HN2 exposure would cause a high MGMT and mDPC level. MGMT was increasingly ubiquitinated after HN2 exposure in a time-dependent manner. At the same time, MGMT was also SUMOylated with a downward time-dependent manner compared to its ubiquitination. Inhibitors of E1, E2 or E3 ligases of ubiqutination all led to the accumulation of mDPC and total-DPC (tDPC) with the difference as that mDPC was sensitive to E1 inhibitor while tDPC more sensitive to E2 and E3 inhibitor. Our results demonstrated the control of mDPC level could be realized through transcription inhibitory effect of c-Myc, O6GB application, and the acceleration of mDPC ubiquitination and subsequent degradation.


Alkylating Agents/toxicity , Bronchi/drug effects , Cross-Linking Reagents/toxicity , DNA Adducts/metabolism , DNA Modification Methylases/metabolism , DNA Repair Enzymes/metabolism , Epithelial Cells/drug effects , Mechlorethamine/toxicity , Tumor Suppressor Proteins/metabolism , Bronchi/metabolism , Bronchi/pathology , Cell Line , DNA Adducts/chemistry , DNA Modification Methylases/chemistry , DNA Modification Methylases/genetics , DNA Repair Enzymes/chemistry , DNA Repair Enzymes/genetics , Epithelial Cells/metabolism , Epithelial Cells/pathology , Histones/metabolism , Humans , NF-kappa B p50 Subunit/metabolism , Protein Binding , Protein Stability , Proteolysis , Proto-Oncogene Proteins c-myc/metabolism , RNA Interference , Sumoylation , Time Factors , Transcription, Genetic/drug effects , Transfection , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination
8.
Mol Neurobiol ; 54(5): 3783-3797, 2017 07.
Article En | MEDLINE | ID: mdl-27271125

Parkinson's disease is a common neurodegenerative disease in the elderly, and mitochondrial defects underlie the pathogenesis of PD. Impairment of mitochondrial homeostasis results in reactive oxygen species formation, which in turn can potentiate the accumulation of dysfunctional mitochondria, forming a vicious cycle in the neuron. Mitochondrial fission/fusion and biogenesis play important roles in maintaining mitochondrial homeostasis. It has been reported that PGC-1α is a powerful transcription factor that is widely involved in the regulation of mitochondrial biogenesis, oxidative stress, and other processes. Therefore, we explored mitochondrial biogenesis, mitochondrial fission/fusion, and especially PGC-1α as the key point in the signaling mechanism of their interaction in rotenone-induced dopamine neurotoxicity. The results showed that mitochondrial number and mass were reduced significantly, accompanied by alterations in proteins known to regulate mitochondrial fission/fusion (MFN2, OPA1, Drp1, and Fis1) and mitochondrial biogenesis (PGC-1α and mtTFA). Further experiments proved that inhibition of mitochondrial fission or promotion of mitochondrial fusion has protective effects in rotenone-induced neurotoxicity and also promotes mitochondrial biogenesis. By establishing cell models of PGC-1α overexpression and reduced expression, we found that PGC-1α can regulate MFN2 and Drp1 protein expression and phosphorylation to influence mitochondrial fission/fusion. In summary, it can be concluded that PGC-1α-mediated cross talk between mitochondrial biogenesis and fission/fusion contributes to rotenone-induced dopaminergic neurodegeneration.


Dopaminergic Neurons/pathology , Mitochondrial Dynamics , Neurotoxins/toxicity , Organelle Biogenesis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Rotenone/toxicity , Animals , Cell Survival/drug effects , DNA, Mitochondrial/genetics , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondrial Dynamics/drug effects , PC12 Cells , Phosphorylation/drug effects , Rats
9.
Toxicol Appl Pharmacol ; 305: 267-273, 2016 08 15.
Article En | MEDLINE | ID: mdl-27342729

Nitrogen mustard (NM), a bifunctional alkylating agent (BAA), contains two alkyl arms and can act as a cross-linking bridge between DNA and protein to form a DNA-protein cross-link (DPC). O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme for alkyl adducts removal, is found to enhance cell sensitivity to BAAs and to promote damage, possibly due to its stable covalent cross-linking with DNA mediated by BAAs. To investigate MGMT-DNA cross-link (mDPC) formation and its possible dual roles in NM exposure, human bronchial epithelial cell line 16HBE was subjected to different concentrations of HN2, a kind of NM, and we found mDPC was induced by HN2 in a concentration-dependent manner, but the mRNA and total protein of MGMT were suppressed. As early as 1h after HN2 treatment, high mDPC was achieved and the level maintained for up to 24h. Quick total DPC (tDPC) and γ-H2AX accumulation were observed. To evaluate the effect of newly predicted protease DVC1 on DPC cleavage, we applied siRNA of MGMT and DVC1, MG132 (proteasome inhibitor), and NMS-873 (p97 inhibitor) and found that proteolysis plays a role. DVC1 was proven to be more important in the cleavage of mDPC than tDPC in a p97-dependent manner. HN2 exposure induced DVC1 upregulation, which was at least partially contributed to MGMT cleavage by proteolysis because HN2-induced mDPC level and DNA damage was closely related with DVC1 expression. Homologous recombination (HR) was also activated. Our findings demonstrated that MGMT might turn into a DNA damage promoter by forming DPC when exposed to HN2. Proteolysis, especially DVC1, plays a crucial role in mDPC repair.


Alkylating Agents/toxicity , DNA Damage/physiology , Mechlorethamine/toxicity , O(6)-Methylguanine-DNA Methyltransferase/metabolism , Cell Line , DNA/metabolism , DNA Repair , DNA-Binding Proteins/metabolism , Histones/metabolism , Humans , Proteolysis
10.
Oxid Med Cell Longev ; 2016: 6705621, 2016.
Article En | MEDLINE | ID: mdl-26770656

It has been confirmed that mitochondrial impairment may underlie both sporadic and familial Parkinson's disease (PD). Mitochondrial fission/fusion and biogenesis are key processes in regulating mitochondrial homeostasis. Therefore, we explored whether the protective effect of resveratrol in rotenone-induced neurotoxicity was associated with mitochondrial fission/fusion and biogenesis. The results showed that resveratrol could not only promote mitochondrial mass and DNA copy number but also improve mitochondrial homeostasis and neuron function in rats and PC12 cells damaged by rotenone. We also observed effects with alterations in proteins known to regulate mitochondrial fission/fusion and biogenesis in rotenone-induced neurotoxicity. Therefore, our findings suggest that resveratrol may prevent rotenone-induced neurotoxicity through regulating mitochondrial fission/fusion and biogenesis.


Mitochondria/metabolism , Mitochondrial Dynamics/genetics , Neurotoxins/toxicity , Organelle Biogenesis , Rotenone/toxicity , Stilbenes/pharmacology , Adenosine Triphosphate/biosynthesis , Animals , Apoptosis/drug effects , Cell Shape/drug effects , Cell Survival/drug effects , DNA, Mitochondrial/genetics , Gene Dosage , Male , Mitochondria/drug effects , Mitochondrial Dynamics/drug effects , Motor Activity/drug effects , Neuroprotective Agents/pharmacology , PC12 Cells , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Resveratrol , Rotarod Performance Test , Survival Analysis , Transcription Factors/metabolism , Transcription, Genetic/drug effects
11.
Cell Mol Neurobiol ; 33(8): 1109-21, 2013 Nov.
Article En | MEDLINE | ID: mdl-24002177

14-3-3 proteins have been confirmed to be involved in Parkinson's disease. It has been reported that an increase of 14-3-3 (theta, epsilon, and gamma) expression has neuroprotective effect in response to rotenone and MPP(+) in dopaminergic cell culture and transgenic C. elegans with alpha-synuclein overexpression. To further investigate the detail mechanism of 14-3-3 proteins in rotenone-induced dopamine neurotoxicity, we observed the expression of 14-3-3 isoforms, and the influence of 14-3-3epsilon knockdown on autophagic activity and cell function. The results showed that rotenone led to a decrease in expression of 14-3-3 protein and mRNA, and an increase in expression and aggregation of alpha-synuclein protein. Knockdown of 14-3-3epsilon expression in turn further aggravated PC12 cell damage, such as an enhancement of ROS formation, and a reduction of cell viability and ATP production. Further experiments confirmed that the autophagic activity was promoted with 14-3-3epsilon siRNA transfection, including an enhancement of autophagosome formation and the ratio of LC3-II/LC3-I. Therefore, we concluded that the regulation of 14-3-3 proteins in rotenone-induced neurotoxicity might be associated with its isoform 14-3-3epsilon's involvement in autophagy, which might be considered a mechanism in addition to the currently known function of 14-3-3 proteins in neurodegenerative disease pathogenesis.


14-3-3 Proteins/metabolism , Autophagy/drug effects , Neurotoxins/toxicity , Rotenone/toxicity , 14-3-3 Proteins/genetics , Adenosine Triphosphate/metabolism , Animals , Autophagy/genetics , Cell Shape/drug effects , Cell Shape/genetics , Cell Survival/drug effects , Cell Survival/genetics , Gene Expression Regulation/drug effects , Microtubule-Associated Proteins/metabolism , PC12 Cells , Phagosomes/drug effects , Phagosomes/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Quaternary , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Rats , Reactive Oxygen Species/metabolism , Transfection , alpha-Synuclein/metabolism
12.
J Toxicol Pathol ; 26(2): 149-57, 2013 Jun.
Article En | MEDLINE | ID: mdl-23914057

Rotenone is an inhibitor of mitochondrial complex I that produces a model of Parkinson's disease (PD), in which neurons undergo dopamine release dysfunction and other features. In neurons, exocytosis is one of the processes associated with dopamine release and is dependent on Ca(2+) dynamic changes of the cell. In the present study, we have investigated the exocytosis of dopamine and the involvement of Ca(2+) in dopamine release in PC12 cells administrated with rotenone. Results demonstrated that rotenone led to an elevation of intracellular Ca(2+) through Ca(2+) influx by opening of the voltage-gated Ca(2+) channel and influenced the soluble N-ethylmaleimide attachment protein receptor (SNARE) proteins expression (including syntaxin, vesicle-associated membrane protein 2 (VAMP2) and synaptosome-associated protein 25 (SNAP-25)); pretreatment with a blocker of L-type voltage-activated Ca(2+) channels (nifedipine) decreased the intracellular dopamine levels and ROS formation, increased the cell viability and enhanced the neurite outgrowth and exocytosis of synaptic vesicles. These results indicated that the involvement of intracellular Ca(2+) was one of the factors resulting in suppression of dopamine release suppression in PC12 cells intoxicated with rotenone, which was associated with the rotenone-induced dopamine neurotoxicity.

...