Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2403202, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39206814

RESUMEN

Lung cancer (LC) is the leading cause of cancer-related mortality worldwide. Radiotherapy is the main component of LC treatment; however, its efficacy is often limited by radioresistance development, resulting in unsatisfactory clinical outcomes. Here, we found that LC radiosensitivity is up-regulated by decreased expression of long-chain acyl-CoA synthase 6 (ACSL6) after irradiation. Deletion of ACSL6 results in significant elevation of Friend leukemia integration 1 transcription factor (FLI1) and a marked decline of collagens (COLs). Blocking of ACSL6 impairs the tumor growth and upregulates FLI1, which reduces the levels of COLs and compromises irradiation-induced autophagy, leading to considerable therapeutic benefits during radiotherapy. Moreover, the direct interaction between ACSL6 and FLI1 and engagement between FLI1 and COLs indicates the involvement of the ACSL6-FLI1-COL axis. Finally, the potently adjusted autophagy flux reduces its otherwise contributive capability in surviving irradiation stress and leads to satisfactory radiosensitization for LC radiotherapy. These results demonstrate that enhanced ACSL6 expression promotes the aggressive performance of irradiated LC through increased FLI1-COL-mediated autophagy flux. Thus, the ACSL6-FLI1-Col-autophagy axis may be targeted to enhance the radiosensitivity of LC and improve the management of LC in radiotherapy.

2.
Adv Mater ; 35(41): e2306103, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37549101

RESUMEN

Harnessing abundant renewable resources and pollutants on a large scale to address environmental challenges, while providing sustainable freshwater, is a significant endeavour. This study presents the design of fully functional solar vaporization devices (SVD) based on organic-inorganic hybrid nanocomposites (CCMs-x). These devices exhibit efficient photothermal properties that facilitate multitargeted interfacial reactions, enabling simultaneous catalysis of sewage and desalination. The localized interfacial heating generated by the photothermal effect of CCMs-x triggers surface-dominated catalysis and steam generation. The CCMs-x SVD achieves a solar water-vapor generation rate of 1.41 kg m-2 h-1 (90.8%), and it achieves over 95% removal of pollutants within 60 min under one-sun for practical application. The exceptional photothermal conversion rate of wastewater for environmental remediation and water capture is attributed to customized microenvironments within the system. The integrated parallel reaction system in SVD ensures it is a real-life application in multiple scenarios such as municipal/medical wastewater and brine containing high concentrations. Additionally, the SVD exhibits long-term durability, antifouling functionality toward complex ionic contaminants. This study not only demonstrates a one-stone-two-birds strategy for large-scale direct production of potable water from polluted seawater, but also opens up exciting possibilities for parallel production of energy and water resources.

3.
Exploration (Beijing) ; 3(2): 20220119, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37324033

RESUMEN

Ionizing radiation (IR) poses a growing threat to human health, and thus ideal radioprotectors with high efficacy and low toxicity still receive widespread attention in radiation medicine. Despite significant progress made in conventional radioprotectants, high toxicity, and low bioavailability still discourage their application. Fortunately, the rapidly evolving nanomaterial technology furnishes reliable tools to address these bottlenecks, opening up the cutting-edge nano-radioprotective medicine, among which the intrinsic nano-radioprotectants characterized by high efficacy, low toxicity, and prolonged blood retention duration, represent the most extensively studied class in this area. Herein, we made the systematic review on this topic, and discussed more specific types of radioprotective nanomaterials and more general clusters of the extensive nano-radioprotectants. In this review, we mainly focused on the development, design innovations, applications, challenges, and prospects of the intrinsic antiradiation nanomedicines, and presented a comprehensive overview, in-depth analysis as well as an updated understanding of the latest advances in this topic. We hope that this review will promote the interdisciplinarity across radiation medicine and nanotechnology and stimulate further valuable studies in this promising field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA