Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Genet Genomics ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38582297

RESUMEN

MicroRNAs (miRNAs) play a significant role in axon regeneration following spinal cord injury. However, the functions of numerous miRNAs in axon regeneration within the central nervous system (CNS) remain largely unexplored. Here, we elucidate the positive role of miR-2184 in axon regeneration within zebrafish Mauthner cells (M-cells). The upregulation of miR-2184 in the single M-cells facilitates axon regeneration, while the specific sponge-induced silencing of miR-2184 leads to impeded axon regeneration. We show that syt3, a downstream target of miR-2184, negatively regulates axon regeneration, and the regeneration suppression by syt3 depends on its binding to Ca2+. Furthermore, pharmacological stimulation of the cAMP/PKA pathway suggests that changes in the readily releasable pool may affect axon regeneration. Our data indicate that miR-2184 promotes axon regeneration of M-cells within the CNS by modulating the downstream target syt3, providing valuable insights into potential therapeutic strategies.

2.
ACS Nano ; 8(3): 2951-8, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24568359

RESUMEN

Optical second harmonic generation (SHG) is known as a sensitive probe to the crystalline symmetry of few-layer transition metal dichalcogenides (TMDs). Layer-number dependent and polarization resolved SHG have been observed for the special case of Bernal stacked few-layer TMDs, but it remains largely unexplored for structures deviated from this ideal stacking order. Here we report on the SHG from homo- and heterostructural TMD bilayers formed by artificial stacking with an arbitrary stacking angle. The SHG from the twisted bilayers is a coherent superposition of the SH fields from the individual layers, with a phase difference depending on the stacking angle. Such an interference effect is insensitive to the constituent layered materials and thus applicable to hetero-stacked bilayers. A proof-of-concept demonstration of using the SHG to probe the domain boundary and crystal polarity of mirror twins formed in chemically grown TMDs is also presented. We show here that the SHG is an efficient, sensitive, and nondestructive characterization for the stacking orientation, crystal polarity, and domain boundary of van der Waals heterostructures made of noncentrosymmetric layered materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA