Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chromatogr A ; 1723: 464906, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38643739

RESUMEN

Consumer concerns over healthy diets are increasing as a result of the toxicity and persistence of pesticide residues in foodstuffs. Developing sensitive and high-throughput monitoring techniques for these trace residues is seen as an essential step in ensuring food safety. An automatic and sensitive multi-residue analytical method was developed and validated for the simultaneous determination of 230 compounds, including pesticides and their hazardous metabolites, in fermented soy products. The method included preparing the sample using on-line extraction and clean-up system based on accelerated solvent extraction (ASE), then determining the analytes using GC-MS/MS techniques. The homogenized samples (soy sauce, douchi, and sufu) were automatically extracted at 80 °C and 10.3 MPa and at the same time, in situ cleaned by 300 mg of primary secondary amine (PSA) combined with 20 mg of hydroxylated multi-walled carbon nanotubes in an extraction cell. The method obtained excellent calibration linearity (r > 0.9220) and a satisfactory analysis of the targeted compounds, which were evaluated with matrix-matched calibration standards over the range of 5-500 µg L-1. The limit of detections (LODs) of analytes were in the range of 0.01-1.29 µg kg-1, 0.01-1.39 µg kg-1, and 0.01-1.34 µg kg-1 in soy sauce, douchi, and sufu, respectively. The limit of quantifications (LOQs), which defined as the lowest spiking level, were set at 5.0 µg kg-1. The recoveries were within 70-120 % for over 95 % of the analytes, and the relative standard deviations (RSDs) were below 13.6 %. Moreover, a positive detection rate of 47 % were obtained when the proposed method was used on 15 real fermented soy products. These results suggested that the developed high-throughput method is highly feasible for monitoring of these target analytes in trace level.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Límite de Detección , Residuos de Plaguicidas , Alimentos de Soja , Espectrometría de Masas en Tándem , Residuos de Plaguicidas/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Alimentos de Soja/análisis , Espectrometría de Masas en Tándem/métodos , Reproducibilidad de los Resultados , Contaminación de Alimentos/análisis , Fermentación
2.
Life (Basel) ; 11(9)2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34575039

RESUMEN

Liquid biopsy with circulating tumor DNA (ctDNA) profiling by next-generation sequencing holds great promise to revolutionize clinical oncology. It relies on the basis that ctDNA represents the real-time status of the tumor genome which contains information of genetic alterations. Compared to tissue biopsy, liquid biopsy possesses great advantages such as a less demanding procedure, minimal invasion, ease of frequent sampling, and less sampling bias. Next-generation sequencing (NGS) methods have come to a point that both the cost and performance are suitable for clinical diagnosis. Thus, profiling ctDNA by NGS technologies is becoming more and more popular since it can be applied in the whole process of cancer diagnosis and management. Further developments of liquid biopsy ctDNA testing will be beneficial for cancer patients, paving the way for precision medicine. In conclusion, profiling ctDNA with NGS for cancer diagnosis is both biologically sound and technically convenient.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA