Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 61
1.
ACS Nano ; 17(14): 13333-13347, 2023 07 25.
Article En | MEDLINE | ID: mdl-37404077

Glioblastomas (GBMs) are aggressive primary brain tumors with fatal outcome. Traditional chemo-radiotherapy has poor therapeutic effect and significant side effects, due to the drug and radiotherapy (RT) resistance, natural blood-brain barrier, and high-dose RT damage. Even more, tumor-associated monocytes (macrophages and microglia, TAMs) constitute up to 30%-50% of the GBM cellular content, and the tumor microenvironment (TME) in GBM is extremely immunosuppressive. Here, we synthesized nanoparticles (D@MLL) that hitchhike on circulating monocytes to target intracranial GBMs with the assistance of low-dose RT. The chemical construction of D@MLL was DOX·HCl loaded MMP-2 peptide-liposome, which could target monocytes by the surface modified lipoteichoic acid. First, low-dose RT at the tumor site increases monocyte chemotaxis and induces M1 type polarization of TAMs. Subsequently, the intravenous injected D@MLL targets circulating monocytes and hitchhikes with them to the central site of the GBM area. DOX·HCl was then released by the MMP-2 response, inducing immunogenic cell death, releasing calreticulin and high-mobility group box 1. This further contributed to TAMs M1-type polarization, dendritic cell maturation, and T cell activation. This study demonstrates the therapeutic advantages of D@MLL delivered by endogenous monocytes to GBM sites after low-dose RT, and it provides a high-precision treatment for GBMs.


Brain Neoplasms , Glioblastoma , Nanoparticles , Humans , Monocytes/metabolism , Glioblastoma/drug therapy , Matrix Metalloproteinase 2/metabolism , Macrophages/metabolism , Brain Neoplasms/drug therapy , Tumor Microenvironment , Cell Line, Tumor
2.
Biomaterials ; 301: 122231, 2023 10.
Article En | MEDLINE | ID: mdl-37418854

The challenge of wound infections post-surgery and open trauma caused by multidrug-resistant bacteria poses a constant threat to clinical treatment. As a promising antimicrobial treatment, photothermal therapy can effectively resolve the problem of drug resistance in conventional antibiotic antimicrobial therapy. Here, we report a deep-penetration functionalized cuttlefish ink nanoparticle (CINP) for photothermal and immunological therapy of wound infections. CINP is decorated with zwitterionic polymer (ZP, namely sulfobetaine methacrylate-methacrylate copolymer) to form CINP@ZP nanoparticles. Natural CINP is found to not only exhibit photothermal destruction of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli), but also trigger macrophages-related innate immunity and enhance their antibacterial functions. The ZP coating on the surface of CINP enables nanoparticles to penetrate into deeply infected wound environment. In addition, CINP@ZP is further integrated into the thermosensitive Pluronic F127 gel (CINP@ZP-F127). After in situ spraying gel, CINP@ZP-F127 is also documented notable antibacterial effects in mice wound models infected with MRSA and E. coli. Collectively, this approach combining of photothermal therapy with immunotherapy can promote delivery efficiency of nanoparticles to the deep foci of infective wounds, and effectively eliminate wound infections.


Methicillin-Resistant Staphylococcus aureus , Nanoparticles , Wound Infection , Mice , Animals , Photothermal Therapy , Escherichia coli , Ink , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Polymers/pharmacology , Wound Infection/drug therapy , Decapodiformes
3.
Adv Mater ; 35(38): e2302551, 2023 Sep.
Article En | MEDLINE | ID: mdl-37310059

Local lung microbiota is closely associated with lung tumorigenesis and therapeutic response. It is found that lung commensal microbes induce chemoresistance in lung cancer by directly inactivating therapeutic drugs via biotransformation. Accordingly, an inhalable microbial capsular polysaccharide (CP)-camouflaged gallium-polyphenol metal-organic network (MON) is designed to eliminate lung microbiota and thereby abrogate microbe-induced chemoresistance. As a substitute for iron uptake, Ga3+ released from MON acts as a "Trojan horse" to disrupt bacterial iron respiration, effectively inactivating multiple microbes. Moreover, CP cloaks endow MON with reduced immune clearance by masquerading as normal host-tissue molecules, significantly increasing residence time in lung tissue for enhanced antimicrobial efficacy. In multiple lung cancer mice models, microbe-induced drug degradation is remarkably inhibited when drugs are delivered by antimicrobial MON. Tumor growth is sufficiently suppressed and mouse survival is prolonged. The work develops a novel microbiota-depleted nanostrategy to overcome chemoresistance in lung cancer by inhibiting local microbial inactivation of therapeutic drugs.


Anti-Infective Agents , Gallium , Lung Neoplasms , Microbiota , Nanoparticles , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Polyphenols , Lung/metabolism , Iron , Lung Neoplasms/drug therapy , Polysaccharides
4.
Adv Mater ; 35(22): e2300977, 2023 Jun.
Article En | MEDLINE | ID: mdl-37029611

Despite the recognition that the gut microbiota acts a clinically significant role in cancer chemotherapy, both mechanistic understanding and translational research are still limited. Maximizing drug efficacy requires an in-depth understanding of how the microbiota contributes to therapeutic responses, while microbiota modulation is hindered by the complexity of the human body. To address this issue, a 3D experimental model named engineered microbiota (EM) is reported for bridging microbiota-drug interaction research and therapeutic decision-making. EM can be manipulated in vitro and faithfully recapitulate the human gut microbiota at the genus/species level while allowing co-culture with cells, organoids, and isolated tissues for testing drug responses. Examination of various clinical and experimental drugs by EM reveales that the gut microbiota affects drug efficacy through three pathways: immunological effects, bioaccumulation, and drug metabolism. Guided by discovered mechanisms, custom-tailored strategies are adopted to maximize the therapeutic efficacy of drugs on orthotopic tumor models with patient-derived gut microbiota. These strategies include immune synergy, nanoparticle encapsulation, and host-guest complex formation, respectively. Given the important role of the gut microbiota in influencing drug efficacy, EM will likely become an indispensable tool to guide drug translation and clinical decision-making.


Gastrointestinal Microbiome , Microbiota , Humans , Hydrogels/pharmacology , Drug Interactions , Models, Theoretical
5.
Adv Sci (Weinh) ; 10(4): e2205480, 2023 02.
Article En | MEDLINE | ID: mdl-36479844

Systematic administration of antibiotics to treat infections often leads to the rapid evolution and spread of multidrug-resistant bacteria. Here, an in situ-formed biotherapeutic gel that controls multidrug-resistant bacterial infections and accelerates wound healing is reported. This biotherapeutic gel is constructed by incorporating stable microbial communities (kombucha) capable of producing antimicrobial substances and organic acids into thermosensitive Pluronic F127 (polyethylene-polypropylene glycol) solutions. Furthermore, it is found that the stable microbial communities-based biotherapeutic gel possesses a broad antimicrobial spectrum and strong antibacterial effects in diverse pathogenic bacteria-derived xenograft infection models, as well as in patient-derived multidrug-resistant bacterial xenograft infection models. The biotherapeutic gel system considerably outperforms the commercial broad-spectrum antibacterial gel (0.1% polyaminopropyl biguanide) in pathogen removal and infected wound healing. Collectively, this biotherapeutic strategy of exploiting stable symbiotic consortiums to repel pathogens provides a paradigm for developing efficient antibacterial biomaterials and overcomes the failure of antibiotics to treat multidrug-resistant bacterial infections.


Anti-Infective Agents , Bacterial Infections , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria , Poloxalene/pharmacology , Bacterial Infections/drug therapy
6.
Small ; 18(49): e2205193, 2022 12.
Article En | MEDLINE | ID: mdl-36285774

Although anticancer vaccines have achieved certain effects in early clinical practice, T cell immunity as the most common responsive pattern of anticancer vaccines is still limited by unsatisfied tumor recognition and inhibition efficiency. As the critical step of T cell immunity, uptake and presentation of specific antigen by antigen-presenting cells (APC) can be activated by inflammation for enhancing the response of T cells to the antigen source. Here, a hybrid nanovaccine named PTh/MnO2 @M activated with a near-infrared ray (NIR) is prepared by coating an autologous tumor cell membrane on the surface of a polythiophene/MnO2 composite core. The photoelectrical material polythiophene can produce local microinflammation under NIR radiation and activate specific T cell antitumor immunity by promoting APC maturation and autologous tumor antigens presentation. Moreover, the synthesized nanovaccine PTh/MnO2 @M is shown to induce a significant antitumor immune response, effectively inhibit the progression of melanoma in mice, and significantly prolong the survival time of mice in vivo. This strategy aims to enhance T-cell immune responses by promoting antigen presentation, leading to effective and specific cancer therapy.


Neoplasms , Vaccines , Mice , Animals , Antigen Presentation , Manganese Compounds , Oxides , Antigens, Neoplasm , Neoplasms/therapy
7.
Biomaterials ; 287: 121628, 2022 Aug.
Article En | MEDLINE | ID: mdl-35704965

Cancer vaccines-based cancer immunotherapy has drawn widespread concern. However, insufficient cancer antigens and inefficient antigen presentation lead to low immune response rate, which greatly restrict the practical application of cancer vaccines. Here, inspired by intracellular proteasome-mediated protein degradation pathway, we report an antigen presentation simplification strategy by extracellular degradation of antigen proteins into peptides with proteolytic enzyme for improving the utilization of cancer antigens and arousing restricted cancer immunity. The pre-degraded antigen peptides are first validated to exhibit an increased capacity on antigen-presenting cell (APC) stimulation compared with proteins and still reserve antigen specificity and major histocompatibility complex (MHC) affinity. Furthermore, by coordinating the pre-degraded peptides with calcium phosphate nanoparticles (CaP), a CaP-peptide vaccine (CaP-Pep) is constructed, which is verified to induce an efficient personalized immune response in vivo for multi-model anti-cancer therapy. Notably, this bioinspired strategy based on extracellular enzymatic hydrolysis for vaccine construction is not only applicable for multiple types of cancers, but also shows great potential in expanding immunology fields and translational medicine.

8.
Adv Mater ; 34(12): e2109213, 2022 Mar.
Article En | MEDLINE | ID: mdl-34995395

The major hurdle in glioblastoma therapy is the low efficacy of drugs crossing the blood-brain barrier (BBB). Neisseria meningitidis is known to specifically enrich in the central nervous system through the guidance of an outer membrane invasion protein named Opca. Here, by loading a chemotherapeutic drug methotrexate (MTX) in hollow manganese dioxide (MnO2 ) nanoparticles with surface modification of the Opca protein of Neisseria meningitidis, a bionic nanotherapeutic system (MTX@MnO2 -Opca) is demonstrated to effectively overcome the BBB. The presence of the Opca protein enables the drug to cross the BBB and penetrate into tumor tissues. After accumulating in glioblastoma, the nanotherapeutic system catalyzes the decomposition of excess H2 O2 in the tumor tissue and thereby generates O2 , which alleviates tumor hypoxia and enhances the effect of chemotherapy in the treatment of glioblastoma. This bionic nanotherapeutic system may exhibit great potential in the treatment of glioblastoma.


Brain Neoplasms , Glioblastoma , Nanoparticles , Neisseria meningitidis , Blood-Brain Barrier/metabolism , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Glioblastoma/metabolism , Humans , Manganese Compounds , Oxides/pharmacology
9.
Small Methods ; 6(1): e2100951, 2022 01.
Article En | MEDLINE | ID: mdl-35041291

Taking inspiration from percutaneous ethanol injection (PEI) for tumor ablation, an acetaldehyde generator (SC@ZIF@ADH) is constructed for tumor treatment by modifying a metal-organic framework nanocarrier (ZIF), which is loaded with alcohol dehydrogenase (ADH), onto the surface of Saccharomyces cerevisiae (SC). Oral administration of SC@ZIF@ADH can target tumor via mannose-mediated targeting to tumor associated macrophages (TAMs) and generate ethanol at the hypoxic tumor areas. Ethanol is subsequently catalyzed to toxic acetaldehyde by ADH, inducing tumor cells apoptosis and polarizing TAMs toward the anti-tumor phenotype. In vivo animal results show that this acetaldehyde generator can cause a temulence-like reaction in the tumor, significantly inhibiting tumor progression, and might provide an intelligent and nonsurgical substitute for PEI therapy.


Acetaldehyde , Colorectal Neoplasms , Administration, Oral , Alcohol Dehydrogenase/genetics , Animals , Colorectal Neoplasms/drug therapy , Saccharomyces cerevisiae
10.
Nat Biomed Eng ; 6(1): 32-43, 2022 01.
Article En | MEDLINE | ID: mdl-34750535

Because a host's immune system is affected by host-microbiota interactions, means of modulating the microbiota could be leveraged to augment the effectiveness of cancer therapies. Here we report that patients with oral squamous cell carcinoma (OSCC) whose tumours contained higher levels of bacteria of the genus Peptostreptococcus had higher probability of long-term survival. We then show that in mice with murine OSCC tumours injected with oral microbiota from patients with OSCCs, antitumour responses were enhanced by the subcutaneous delivery of an adhesive hydrogel incorporating silver nanoparticles (which inhibited the growth of bacteria competing with Peptostreptococcus) alongside the intratumoural delivery of the bacterium P. anaerobius (which upregulated the levels of Peptostreptococcus). We also show that in mice with subcutaneous or orthotopic murine OSCC tumours, combination therapy with the two components (nanoparticle-incorporating hydrogel and exogenous P. anaerobius) synergized with checkpoint inhibition with programmed death-1. Our findings suggest that biomaterials can be designed to modulate human microbiota to augment antitumour immune responses.


Microbiota , Mouth Neoplasms , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Squamous Cell Carcinoma of Head and Neck , Animals , Biocompatible Materials , Humans , Metal Nanoparticles , Mice , Mouth/microbiology , Mouth Neoplasms/drug therapy , Mouth Neoplasms/immunology , Peptostreptococcus/drug effects , Silver , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/immunology
11.
Nanoscale ; 13(8): 4420-4431, 2021 Mar 04.
Article En | MEDLINE | ID: mdl-33616147

Traditional methods of depleting tumor-associated myeloid cells via chemotherapy can easily lead to the re-recruitment of them, eventually resulting in chemo-resistance and presenting obstacles in immunotherapy. Herein, we report a nano-educator (NE) that when loaded with all trans retinoic acid (ATRA) and anti-PD-1 antibodies (aPD-1) instructs myeloid cells to assist T cells towards revitalizing anti-PD-1 therapy. In vivo, ATRA converts myeloid-derived suppressor cells (MDSCs) into dendritic cells (DCs), which are essential for anti-PD-1 therapy, while intervening in the polarization of macrophages. Furthermore, aPD-1-armed T cells reboot anti-tumor immunity after suppression relief, which exposes tumor-specific antigens and in turn promotes the maturation of transformed DCs. The nano-platform provides shelter for vulnerable immunomodulatory agents and durable drug release to stimulate intensive immune modulation. We established three types of tumor-bearing mice models with different myeloid cell contents to show the spatiotemporal complementarity of ATRA and aPD-1. The NE re-educates the tumor's guard to assist T cells in enhanced immunotherapy, broadening the application of aPD-1 in the treatment of anti-PD-1-resistant tumors.


Myeloid Cells , Myeloid-Derived Suppressor Cells , Animals , Cell Line, Tumor , Immunotherapy , Macrophages , Mice
12.
Small ; 17(5): e2006582, 2021 02.
Article En | MEDLINE | ID: mdl-33382206

Glioblastoma is the most common lethal malignant intracranial tumor with a low 5-year survival rate. Currently, the maximal safe surgical resection, followed by high-dose radiotherapy (RT), is a standard treatment for glioblastoma. However, high-dose radiation to the brain is associated with brain injury and results in a high fatality rate. Here, integrated pharmaceutics (named D-iGSNPs) composed of gold sub-nanometer particles (GSNPs), blood-brain barrier (BBB) penetration peptide iRGD, and cell cycle regulator α-difluoromethylornithine is designed. In both simulated BBB and orthotopic murine GL261 glioblastoma models, D-iGSNPs are proved to have a beneficial effect on the BBB penetration and tumor targeting. Meanwhile, data from cell and animal experiments reveal that D-iGSNPs are able to sensitize RT. More importantly, the synergy of D-iGSNPs with low-dose RT can exhibit an almost equal therapeutic effect with that of high-dose RT. This study demonstrates the therapeutic advantages of D-iGSNPs in boosting RT, and may provide a facile approach to update the current treatment of glioblastoma.


Brain Neoplasms , Glioblastoma , Animals , Blood-Brain Barrier , Brain , Brain Neoplasms/radiotherapy , Cell Line, Tumor , Glioblastoma/radiotherapy , Gold , Mice
13.
Chem Sci ; 11(17): 4403-4409, 2020 May 07.
Article En | MEDLINE | ID: mdl-33209242

Accumulating evidence indicates that colonized microbes play a crucial role in regulating health and disease in the human body. Detecting microbes should be essential for understanding the relationship between microbes and diseases, as well as increasing our ability to detect diseases. Here, a combined metabolic labeling strategy was developed to identify different bacterial species and microbiota by the use of three different fluorescent metabolite derivatives emitting red, green, and blue (RGB) fluorescence. Upon co-incubation with microbes, these fluorescent metabolite derivatives are incorporated into bacteria, generating unique true-color fingerprints for different bacterial species and different microbiota. A portable spectrometer was also fabricated to automate the colorimetric analysis in combination with a smartphone to conveniently identify different bacterial species and microbiota. Herein, the effectiveness of this system was demonstrated by the identification of certain bacterial species and microbiota in mice with different diseases, such as skin infections and bacteremia. By analyzing the microbiota fingerprints of saliva samples from clinical patients and healthy people, this system was proved to precisely distinguish oral squamous cell carcinoma (OSCC, n = 29) samples from precancerous (n = 10) and healthy (n = 5) samples.

14.
Nat Commun ; 11(1): 4907, 2020 09 30.
Article En | MEDLINE | ID: mdl-32999289

Global alterations in the metabolic network provide substances and energy to support tumor progression. To fuel these metabolic processes, extracellular matrix (ECM) plays a dominant role in supporting the mass transport and providing essential nutrients. Here, we report a fibrinogen and thrombin based coagulation system to construct an artificial ECM (aECM) for selectively cutting-off the tumor metabolic flux. Once a micro-wound is induced, a cascaded gelation of aECM can be triggered to besiege the tumor. Studies on cell behaviors and metabolomics reveal that aECM cuts off the mass transport and leads to a tumor specific starvation to inhibit tumor growth. In orthotopic and spontaneous murine tumor models, this physical barrier also hinders cancer cells from distant metastasis. The in vivo gelation provides an efficient approach to selectively alter the tumor mass transport. This strategy results in a 77% suppression of tumor growth. Most importantly, the gelation of aECM can be induced by clinical operations such as ultrasonic treatment, surgery or radiotherapy, implying this strategy is potential to be translated into a clinical combination regimen.


Biomimetic Materials/administration & dosage , Extracellular Matrix/chemistry , Neoplasms/therapy , Animals , Biological Transport/drug effects , Biological Transport/radiation effects , Biomimetic Materials/chemistry , Biomimetic Materials/radiation effects , Cell Line, Tumor/transplantation , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Chemoradiotherapy/methods , Disease Models, Animal , Extracellular Matrix/metabolism , Extracellular Matrix/radiation effects , Female , Fibrinogen/administration & dosage , Fibrinogen/chemistry , Fibrinogen/radiation effects , Gels , Humans , Injections, Intravenous , Metabolomics , Mice , Neoplasms/metabolism , Thrombin/administration & dosage , Thrombin/chemistry , Thrombin/radiation effects , Ultrasonic Therapy/methods , Ultrasonic Waves
15.
Adv Mater ; 32(45): e2004529, 2020 Nov.
Article En | MEDLINE | ID: mdl-33006175

While microbial-based therapy has been considered as an effective strategy for treating diseases such as colon cancer, its safety remains the biggest challenge. Here, probiotics and prebiotics, which possess ideal biocompatibility and are extensively used as additives in food and pharmaceutical products, are combined to construct a safe microbiota-modulating material. Through the host-guest chemistry between commercial Clostridium butyricum and chemically modified prebiotic dextran, prebiotics-encapsulated probiotic spores (spores-dex) are prepared. It is found that spores-dex can specifically enrich in colon cancers after oral administration. In the lesion, dextran is fermented by C. butyricum, and thereby produces anti-cancer short-chain fatty acids (SCFAs). Additionally, spores-dex regulate the gut microbiota, augment the abundance of SCFA-producing bacteria (e.g., Eubacterium and Roseburia), and markedly increase the overall richness of microbiota. In subcutaneous and orthotopic tumor models, drug-loaded spores-dex inhibit tumor growth up to 89% and 65%, respectively. Importantly, no obvious adverse effect is found. The work sheds light on the possibility of using a highly safe strategy to regulate gut microbiota, and provides a promising avenue for treating various gastrointestinal diseases.


Colonic Neoplasms/microbiology , Gastrointestinal Microbiome/drug effects , Prebiotics , Probiotics/pharmacology , Spores/physiology , Colonic Neoplasms/drug therapy , Dextrans/chemistry , Humans , Probiotics/chemistry , Safety
16.
Nat Biomed Eng ; 4(9): 853-862, 2020 09.
Article En | MEDLINE | ID: mdl-32632226

Patients with kidney failure commonly require dialysis to remove nitrogenous wastes and to reduce burden to the kidney. Here, we show that a bacterial cocktail orally delivered in animals with kidney injury can metabolize blood nitrogenous waste products before they diffuse through the intestinal mucosal barrier. The microbial cocktail consists of three strains of bacteria isolated from faecal microbiota that metabolize urea and creatinine into amino acids, and is encapsulated in calcium alginate microspheres coated with a polydopamine layer that is selectively permeable to small-molecule nitrogenous wastes. In murine models of acute kidney injury and chronic kidney failure, and in porcine kidney failure models, the encapsulated microbial cocktail significantly reduced urea and creatinine concentrations in blood, and did not lead to any adverse effects.


Enterosorption/methods , Microbiota , Nitrogen Compounds/isolation & purification , Renal Insufficiency/therapy , Administration, Oral , Alginates/chemistry , Ammonia/metabolism , Animals , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , Capsules/administration & dosage , Capsules/chemistry , Creatinine/metabolism , Disease Models, Animal , Feces/microbiology , Indoles/chemistry , Mice , Microfluidics , Microspheres , Nitrogen Compounds/metabolism , Polymers/chemistry , Swine , Treatment Outcome , Urea/metabolism
17.
Sci Adv ; 6(23): eabb0020, 2020 06.
Article En | MEDLINE | ID: mdl-32548273

Although vascular disrupting agents (VDAs) have been extensively implemented in current clinical tumor therapy, the notable adverse events caused by long-term dosing severely limit the therapeutic efficacy. To improve this therapy, we report a strategy for VDA-induced aggregation of gold nanoparticles to further destroy tumor vascular by photothermal effect. This strategy could effectively disrupt tumor vascular and cut off the nutrition supply after just one treatment. In the murine tumor model, this strategy results in notable tumor growth inhibition and gives rise to a 92.7% suppression of tumor growth. Besides, enhanced vascular damage could also prevent cancer cells from distant metastasis. Moreover, compared with clinical therapies, this strategy still exhibits preferable tumor suppression and metastasis inhibition ability. These results indicate that this strategy has great potential in tumor treatment and could effectively enhance tumor vascular damage and avoid the side effects caused by frequent administration.

18.
Sci Adv ; 6(20): eaba1590, 2020 05.
Article En | MEDLINE | ID: mdl-32440552

Mounting evidence suggests that the gut microbiota contribute to colorectal cancer (CRC) tumorigenesis, in which the symbiotic Fusobacterium nucleatum (Fn) selectively increases immunosuppressive myeloid-derived suppressor cells (MDSCs) to hamper the host's anticancer immune response. Here, a specifically Fn-binding M13 phage was screened by phage display technology. Then, silver nanoparticles (AgNP) were assembled electrostatically on its surface capsid protein (M13@Ag) to achieve specific clearance of Fn and remodel the tumor-immune microenvironment. Both in vitro and in vivo studies showed that of M13@Ag treatment could scavenge Fn in gut and lead to reduction in MDSC amplification in the tumor site. In addition, antigen-presenting cells (APCs) were activated by M13 phages to further awaken the host immune system for CRC suppression. M13@Ag combined with immune checkpoint inhibitors (α-PD1) or chemotherapeutics (FOLFIRI) significantly prolonged overall mouse survival in the orthotopic CRC model.


Bacteriophages , Colorectal Neoplasms , Gastrointestinal Microbiome , Metal Nanoparticles , Animals , Colorectal Neoplasms/metabolism , Fusobacterium nucleatum , Mice , Silver , Tumor Microenvironment
19.
Nat Commun ; 11(1): 1985, 2020 04 24.
Article En | MEDLINE | ID: mdl-32332752

The unsatisfactory response rate of immune checkpoint blockade (ICB) immunotherapy severely limits its clinical application as a tumor therapy. Here, we generate a vaccine-based nanosystem by integrating siRNA for Cd274 into the commercial human papillomavirus (HPV) L1 (HPV16 L1) protein. This nanosystem has good biosafety and enhances the therapeutic response rate of anti-tumor immunotherapy. The HPV16 L1 protein activates innate immunity through the type I interferon pathway and exhibits an efficient anti-cancer effect when cooperating with ICB therapy. For both resectable and unresectable breast tumors, the nanosystem decreases 71% tumor recurrence and extends progression-free survival by 67%. Most importantly, the nanosystem successfully induces high response rates in various genetically modified breast cancer models with different antigen loads. The strong immune stimulation elicited by this vaccine-based nanosystem might constitute an approach to significantly improve current ICB immunotherapy.


Antineoplastic Agents, Immunological/therapeutic use , Breast Neoplasms/therapy , Cancer Vaccines/administration & dosage , Immunotherapy/methods , Nanoparticles/administration & dosage , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/genetics , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Capsid Proteins/genetics , Capsid Proteins/immunology , Cell Line, Tumor/transplantation , Disease Models, Animal , Female , Gene Knockdown Techniques , HEK293 Cells , Human papillomavirus 16/genetics , Human papillomavirus 16/immunology , Humans , Immunity, Innate/genetics , Mice , Neoplasm Recurrence, Local , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/immunology , Progression-Free Survival , RNA, Small Interfering/genetics , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
20.
Adv Mater ; 32(16): e2000376, 2020 Apr.
Article En | MEDLINE | ID: mdl-32134530

Traditional phototherapies face the issue that the insufficient penetration of light means it is difficult to reach deep lesions, which greatly reduces the feasibility of cancer therapy. Here, an implantable nitric oxide (NO)-release device is developed to achieve long-term, long-distance, remote-controllable gas therapy for cancer. The device consists of a wirelessly powered light-emitting diode (wLED) and S-nitrosoglutathione encapsulated with poly(dimethylsiloxane) (PDMS), obtaining the NO-release wLED (NO-wLED). It is found that NO release from the NO-wLED can be triggered by wireless charging and the concentration of produced NO reaches 0.43 × 10-6 m min-1 , which can achieve a killing effect on cancer cells. In vivo anticancer experiments exhibit obvious inhibitory effect on the growth of orthotopic cancer when the implanted NO-wLED is irradiated by wireless charging. In addition, recurrence of cancer can be prevented by NO produced from the NO-wLED after surgery. By illumination in the body, this strategy overcomes the poor penetration and long-wavelength dependence of traditional phototherapies, which also provides a promising approach for in vivo gas therapy remote-controlled by wireless charging.


Colonic Neoplasms/therapy , Nitric Oxide/metabolism , Phototherapy/instrumentation , Wireless Technology , Animals , Cell Line, Tumor , Colonic Neoplasms/metabolism , Electric Power Supplies , Mice
...