Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 468
1.
ACS Appl Mater Interfaces ; 16(19): 24410-24420, 2024 May 15.
Article En | MEDLINE | ID: mdl-38709954

Sonophotodynamic antimicrobial therapy (SPDAT) is recognized as a highly efficient biomedical treatment option, known for its versatility and remarkable healing outcomes. Nevertheless, there is a scarcity of sonophotosensitizers that demonstrate both low cytotoxicity and exceptional antibacterial effectiveness in clinical applications. In this paper, a novel ZnO nanowires (NWs)@TiO2-xNy core-sheath composite was developed, which integrates the piezoelectric effect and heterojunction to build dual built-in electric fields. Remarkably, it showed superb antibacterial effectiveness (achieving 95% within 60 min against S. aureus and ∼100% within 40 min against E. coli, respectively) when exposed to visible light and ultrasound. Due to the continuous interference caused by light and ultrasound, the material's electrostatic equilibrium gets disrupted. The modification in electrical properties facilitates the composite's ability to attract bacterial cells through electrostatic forces. Moreover, Zn-O-Ti and Zn-N-Ti bonds formed at the interface of ZnO NWs@TiO2-xNy, further enhancing the dual internal electric fields to accelerate the excited carrier separation to generate more reactive oxygen species (ROS), and thereby boosting the antimicrobial performance. In addition, the TiO2 layer limited Zn2+ dissolution into solution, leading to good biocompatibility and low cytotoxicity. Lastly, we suggest a mechanistic model to offer practical direction for the future development of antibacterial agents that are both low in toxicity and high in efficacy. In comparison to the traditional photodynamic therapy systems, ZnO NWs@TiO2-xNy composites exhibit super piezo-photocatalytic antibacterial activity with low toxicity, which shows great potential for clinical application as an antibacterial nanomaterial.


Anti-Bacterial Agents , Escherichia coli , Nanowires , Staphylococcus aureus , Titanium , Zinc Oxide , Titanium/chemistry , Titanium/pharmacology , Titanium/radiation effects , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Nanowires/chemistry , Catalysis , Reactive Oxygen Species/metabolism , Microbial Sensitivity Tests , Humans , Light , Mice , Animals
2.
J Am Chem Soc ; 2024 May 15.
Article En | MEDLINE | ID: mdl-38750611

Most of the nanozymes have been obtained based on trial and error, for which the application is usually compromised by enzymatic activity regulation due to a vague catalytic mechanism. Herein, a hollow axial Mo-Pt single-atom nanozyme (H-MoN5@PtN4/C) is constructed by a two-tier template capture strategy. The axial ligand can induce Mo 4d orbital splitting, leading to a rearrangement of spin electrons (↑ ↑ → ↑↓) to regulate enzymatic activity. This creates catalase-like activity and enhances oxidase-like activity to catalyze cascade enzymatic reactions (H2O2 → O2 → O2•-), which can overcome tumor hypoxia and accumulate cytotoxic superoxide radicals (O2•-). Significantly, H-MoN5@PtN4/C displays destructive d-π conjugation between the metal and substrate to attenuate the restriction of orbitals and electrons. This markedly improves enzymatic performance (catalase-like and oxidase-like activity) of a Mo single atom and peroxidase-like properties of a Pt single atom. Furthermore, the H-MoN5@PtN4/C can deplete overexpressed glutathione (GSH) through a redox reaction, which can avoid consumption of ROS (O2•- and •OH). As a result, H-MoN5@PtN4/C can overcome limitations of a complex tumor microenvironment (TME) for tumor-specific therapy based on TME-activated catalytic activity.

3.
J Am Chem Soc ; 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38592685

The determination of catalytically active sites is crucial for understanding the catalytic mechanism and providing guidelines for the design of more efficient catalysts. However, the complex structure of supported metal nanocatalysts (e.g., support, metal surface, and metal-support interface) still presents a big challenge. In particular, many studies have demonstrated that metal-support interfaces could also act as the primary active sites in catalytic reactions, which is well elucidated in oxide-supported metal nanocatalysts but is rarely reported in carbon-supported metal nanocatalysts. Here, we fill the above gap and demonstrate that metal-sulfur interfaces in sulfur-doped carbon-supported metal nanocatalysts are the primary active sites for several catalytic hydrogenation reactions. A series of metal nanocatalysts with similar sizes but different amounts of metal-sulfur interfaces were first constructed and characterized. Taking Ir for quinoline hydrogenation as an example, it was found that their catalytic activities were proportional to the amount of the Ir-S interface. Further experiments and density functional theory (DFT) calculations suggested that the adsorption and activation of quinoline occurred on the Ir atoms at the Ir-S interface. Similar phenomena were found in p-chloronitrobenzene hydrogenation over the Pt-S interface and benzoic acid hydrogenation over the Ru-S interface. All of these findings verify the predominant activity of metal-sulfur interfaces for catalytic hydrogenation reactions and contribute to the comprehensive understanding of metal-support interfaces in supported nanocatalysts.

4.
Angew Chem Int Ed Engl ; : e202405592, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38647330

In aqueous aluminum-ion batteries(AAIBs), the insertion/extraction chemistry of Al3+ often leads to poor kinetics, whereas the rapid diffusion kinetics of hydrated hydrogen ions (H3O+) may offer the solution. However, the presence of considerable Al3+ in the electrolyte hinders the insertion reaction of H3O+. Herein, we report how oxygen-deficient α-MoO3 nanosheets unlock selective H3O+ insertion in a mild aluminum-ion electrolyte. The abundant oxygen defects impede the insertion of Al3+ due to excessively strong adsorption, while allowing H3O+ to be inserted/diffused through the Grotthuss proton conduction mechanism. This research advances our understanding of the mechanism behind selective H3O+ insertion in mild electrolytes.

5.
J Chem Inf Model ; 64(9): 3650-3661, 2024 May 13.
Article En | MEDLINE | ID: mdl-38630581

Protein engineering faces challenges in finding optimal mutants from a massive pool of candidate mutants. In this study, we introduce a deep-learning-based data-efficient fitness prediction tool to steer protein engineering. Our methodology establishes a lightweight graph neural network scheme for protein structures, which efficiently analyzes the microenvironment of amino acids in wild-type proteins and reconstructs the distribution of the amino acid sequences that are more likely to pass natural selection. This distribution serves as a general guidance for scoring proteins toward arbitrary properties on any order of mutations. Our proposed solution undergoes extensive wet-lab experimental validation spanning diverse physicochemical properties of various proteins, including fluorescence intensity, antigen-antibody affinity, thermostability, and DNA cleavage activity. More than 40% of ProtLGN-designed single-site mutants outperform their wild-type counterparts across all studied proteins and targeted properties. More importantly, our model can bypass the negative epistatic effect to combine single mutation sites and form deep mutants with up to seven mutation sites in a single round, whose physicochemical properties are significantly improved. This observation provides compelling evidence of the structure-based model's potential to guide deep mutations in protein engineering. Overall, our approach emerges as a versatile tool for protein engineering, benefiting both the computational and bioengineering communities.


Neural Networks, Computer , Protein Engineering , Protein Engineering/methods , Mutation , Proteins/chemistry , Proteins/genetics , Proteins/metabolism , Models, Molecular , Protein Conformation , Deep Learning
6.
Chem Sci ; 15(15): 5612-5626, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38638240

Prokaryotic Argonaute (pAgo) proteins, a class of DNA/RNA-guided programmable endonucleases, have been extensively utilized in nucleic acid-based biosensors. The specific binding and cleavage of nucleic acids by pAgo proteins, which are crucial processes for their applications, are dependent on the presence of Mn2+ bound in the pockets, as verified through X-ray crystallography. However, a comprehensive understanding of how dissociated Mn2+ in the solvent affects the catalytic cycle, and its underlying regulatory role in this structure-function relationship, remains underdetermined. By combining experimental and computational methods, this study reveals that unbound Mn2+ in solution enhances the flexibility of diverse pAgo proteins. This increase in flexibility through decreasing the number of hydrogen bonds, induced by Mn2+, leads to higher affinity for substrates, thus facilitating cleavage. More importantly, Mn2+-induced structural flexibility increases the mismatch tolerance between guide-target pairs by increasing the conformational states, thereby enhancing the cleavage of mismatches. Further simulations indicate that the enhanced flexibility in linkers triggers conformational changes in the PAZ domain for recognizing various lengths of nucleic acids. Additionally, Mn2+-induced dynamic alterations of the protein cause a conformational shift in the N domain and catalytic sites towards their functional form, resulting in a decreased energy penalty for target release and cleavage. These findings demonstrate that the dynamic conformations of pAgo proteins, resulting from the presence of the unbound Mn2+ in solution, significantly promote the catalytic cycle of endonucleases and the tolerance of cleavage to mismatches. This flexibility enhancement mechanism serves as a general strategy employed by Ago proteins from diverse prokaryotes to accomplish their catalytic functions and provide useful information for Ago-based precise molecular diagnostics.

7.
J Am Chem Soc ; 146(15): 10735-10744, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38574239

The lack of highly efficient and inexpensive catalysts severely hinders the large-scale application of Zn-air batteries (ZABs). High-entropy oxides (HEOs) exhibit unique structures and attractive properties; thus, they are promising to be used in ZABs. However, conventional high-temperature synthesis methods tend to obtain microscale HEOs with a lower exposure rate of active sites. Here, we report a facile solvothermal strategy for preparing two-dimensional (2D) HEO sub-1 nm nanosheets (SNSs) induced by polyoxometalate (POM) clusters. Taking advantage of the special 2D sub-1 nm structure and precise element regulation, these 2D HEOs-POM SNSs exhibit enhanced bifunctional oxygen evolution and oxygen reduction reaction activity under light irradiation. Further applying these 2D HEOs-POM SNSs to ZABs as cathode catalysts, the CoFeNiMnCuZnOx-phosphomolybdic acid SNSs-based ZABs deliver a low charge/discharge voltage gap of 0.25 V at 2 mA cm-2 under light irradiation. Meanwhile, it could maintain an ultralong-term stability for 1600 h at 2 mA cm-2 and 930 h at 10 mA cm-2. The 2D sub-1 nm structure and fine element control in HEOs provide opportunities to solve the problems of low intrinsic activity, limited active sites, and instability of air cathodes in ZABs.

8.
Article En | MEDLINE | ID: mdl-38602509

Unique active sites make single-atom (SA) catalysts promising to overcome obstacles in homogeneous catalysis but challenging due to their fixed coordination environment. Click chemistry is restricted by the low activity of more available Cu(II) catalysts without reducing agents. Herein, we develop efficient, O-coordinated SA Cu(II) directly catalyzed click chemistry. As revealed by theoretical calculations of the superior coordination structure to promote the click reaction, an organic molecule-assisted strategy is applied to prepare the corresponding SA Cu catalysts with respective O and N coordination. Although they both belong to Cu(II) centers, the O-coordinated one exhibits a 5-fold higher activity than the other and even much better activity than traditional homogeneous and heterogeneous Cu(II) catalysts. Control experiments further proved that the O-coordinated SA Cu(II) catalyst tends to be reduced by alkyne into Cu acetylide rather than the N-coordinated catalyst and thus facilitates click chemistry.

9.
Sci Bull (Beijing) ; 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38679503

The anodic oxygen evolution reaction is a well-acknowledged side reaction in traditional aqueous electrochemiluminescence (ECL) systems due to the generation and surface aggregation of oxygen at the electrode, which detrimentally impacts the stability and efficiency of ECL emission. However, the effect of reactive oxygen species generated during water oxidation on ECL luminophores has been largely overlooked. Taking the typical luminol emitter as an example, herein, we employed NiIr single-atom alloy aerogels possessing efficient water oxidation activity as a prototype co-reaction accelerator to elucidate the relationship between ECL behavior and water oxidation reaction kinetics for the first time. By regulating the concentration of hydroxide ions in the electrolyte, the electrochemical oxidation processes of both luminol and water are finely tuned. When the concentration of hydroxide ions in electrolyte is low, the kinetics of water oxidation is attenuated, which limits the generation of oxygen, effectively mitigates the influence of oxygen accumulation on the ECL strength, and offers a novel perspective for harnessing side reactions in ECL systems. Finally, a sensitive and stable sensor for antioxidant detection was constructed and applied to the practical sample detection.

10.
Nat Commun ; 15(1): 3619, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38684692

The nitrate (NO3-) electroreduction into ammonia (NH3) represents a promising approach for sustainable NH3 synthesis. However, the variation of adsorption configurations renders great difficulties in the simultaneous optimization of binding energy for the intermediates. Though the extensively reported Cu-based electrocatalysts benefit NO3- adsorption, one of the key issues lies in the accumulation of nitrite (NO2-) due to its weak adsorption, resulting in the rapid deactivation of catalysts and sluggish kinetics of subsequent hydrogenation steps. Here we report a tandem electrocatalyst by combining Cu single atoms catalysts with adjacent Co3O4 nanosheets to boost the electroreduction of NO3- to NH3. The obtained tandem catalyst exhibits a yield rate for NH3 of 114.0 mg NH 3 h-1 cm-2, which exceeds the previous values for the reported Cu-based catalysts. Mechanism investigations unveil that the combination of Co3O4 regulates the adsorption configuration of NO2- and strengthens the binding with NO2-, thus accelerating the electroreduction of NO3- to NH3.

11.
Anal Methods ; 16(15): 2292-2300, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38526022

Although many excellent nanozymes have been developed, designing and synthesizing highly active nanozymes is still challenging. Here, we developed a metal-based nanozyme (metal = Co, Fe, Cu, Zn) with a three-dimensional network structure. It possesses excellent peroxidase activity and catalyzes the reaction between H2O2 and TMB to produce blue oxTMB, while antioxidants have different reducing power on the oxidation product of TMB (oxTMB), which leads to different absorbance and color changes. Using these color reactions, different nanozymes were used to form a colorimetric sensor array with seven antioxidants, and seven antioxidants were sensitively identified. And the differences between the three nanozymes were compared by density functional theory calculations and enzyme kinetic curve results. In conclusion, the colorimetric sensor array based on metal-based nanozymes provides a good strategy for the identification and detection of antioxidants, which has a broad application prospect.


Antioxidants , Colorimetry , Hydrogen Peroxide , Metals , Physics
12.
Nat Commun ; 15(1): 1973, 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38438342

Seawater electrolysis offers a renewable, scalable, and economic means for green hydrogen production. However, anode corrosion by Cl- pose great challenges for its commercialization. Herein, different from conventional catalysts designed to repel Cl- adsorption, we develop an atomic Ir catalyst on cobalt iron layered double hydroxide (Ir/CoFe-LDH) to tailor Cl- adsorption and modulate the electronic structure of the Ir active center, thereby establishing a unique Ir-OH/Cl coordination for alkaline seawater electrolysis. Operando characterizations and theoretical calculations unveil the pivotal role of this coordination state to lower OER activation energy by a factor of 1.93. The Ir/CoFe-LDH exhibits a remarkable oxygen evolution reaction activity (202 mV overpotential and TOF = 7.46 O2 s-1) in 6 M NaOH+2.8 M NaCl, superior over Cl--free 6 M NaOH electrolyte (236 mV overpotential and TOF = 1.05 O2 s-1), with 100% catalytic selectivity and stability at high current densities (400-800 mA cm-2) for more than 1,000 h.

13.
Nat Commun ; 15(1): 2045, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38448464

Metal-organic frameworks have drawn attention as potential catalysts owing to their unique tunable surface chemistry and accessibility. However, their application in thermal catalysis has been limited because of their instability under harsh temperatures and pressures, such as the hydrogenation of CO2 to methanol. Herein, we use a controlled two-step method to synthesize finely dispersed Cu on a zeolitic imidazolate framework-8 (ZIF-8). This catalyst suffers a series of transformations during the CO2 hydrogenation to methanol, leading to ~14 nm Cu nanoparticles encapsulated on the Zn-based MOF that are highly active (2-fold higher methanol productivity than the commercial Cu-Zn-Al catalyst), very selective (>90%), and remarkably stable for over 150 h. In situ spectroscopy, density functional theory calculations, and kinetic results reveal the preferential adsorption sites, the preferential reaction pathways, and the reverse water gas shift reaction suppression over this catalyst. The developed material is robust, easy to synthesize, and active for CO2 utilization.

14.
J Colloid Interface Sci ; 665: 204-218, 2024 Jul.
Article En | MEDLINE | ID: mdl-38522160

Upcycle polyethylene terephthalate (PET) waste by photoreforming (PR) is a sustainable and green approach to tackle environmental problems but with challenges to obtain valuable oxidation products and high purity hydrogen simultaneously. Noble metal cocatalysts are essential to enhance the overall PR reaction efficacy. In this work, TiO2 nanotubes (TiO2 NTs) decorated with single Pt atoms (Pt1/TiO2) or Pt nanoparticles (PtNPs/TiO2) are used in the photoreforming reaction (in one batch), and the oxidation products from ethylene glycol (EG, hydrolysed product of PET) in liquid phase and hydrogen are detected. With Pt1/TiO2, EG is oxidized to glyoxal, glyoxylate or lactate, and hydrogen evolution rate (r H2) reaches 51.8 µmol⋅h-1⋅gcat-1, that is 30 times higher than that of TiO2. For PtNPs/TiO2 (size of Pt NPs: 1.97 nm), hydrogen evolution reaches 219.1 µmol⋅h-1⋅gcat-1, but with the oxidation product of acetate only. DFT calculation demonstrates that for Pt NPs, the reaction path for hydrogen evolution is preferred thermodynamically, due to the formation of Schottky junction. On the oxidation of EG, theoretical and spectroscopic analysis suggest that bidentate adsorption of EG at the interface is facile on Pt1/TiO2, compared to that on PtNPs/TiO2 (two Pt sites), but oxidation products, adsorb less strongly, compared to PtNPs/TiO2, that eventually regulates the distribution of oxidation products. The results thus demonstrate the bifunctions of Pt in the PR reaction, i.e., electron transfer mediator for hydrogen evolution and reactive sites for molecules adsorption. The oxidation reaction is dominated by the adsorption-desorption behavior of molecules but the reduction reaction is controlled by the electron transfer. In addition, acidification of pretreated PET alkaline solution achieves separation of pure terephthalic acid (PTA), which further improves the reaction efficiency possibly by offering high density of active sites and acidic environment. Our work thus demonstrates that to upcycle PET plastics, an optimized process can be reached by atomic design of photocatalysts and proper treatment on the plastic wastes.

15.
ACS Appl Mater Interfaces ; 16(11): 13685-13696, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38449444

Chemoselective hydrogenation of carbonyl in unsaturated aldehydes is a significant process in the chemical industry, in which the development of aqueous-phase reaction systems as a substitution to organic ones is challenging. Herein, we report Ir atomic cluster catalysts anchored onto WO3-x nanorods via a reduction treatment at various temperatures (denoted as Ir/WOx-T, T = 200, 300, 400, and 500 °C), which accelerates the chemoselective hydrogenation of carbonyl groups in aqueous solutions. The optimal catalyst Ir/WOx-300 exhibits exceptional activity (TOF value: 1313.7 min-1) and chemoselectivity toward cinnamaldehyde (CAL) hydrogenation to cinnamyl alcohol (COL) (yield: ∼98.0%) in water medium, which is, to the best of our knowledge, the highest level compared with previously reported heterogeneous catalysts in liquid-phase reaction. Ac-HAADF-STEM, XAFS, and XPS verify the formation of interface structure (Irδ+-Ov-W5+ (0 ≤ δ ≤ 4); Ov denotes oxygen vacancy) induced by metal-support interaction and the largest concentration of interfacial Ir (Irδ+) in Ir/WOx-300. In situ studies (Raman, FT-IR), isotopic labeling measurements combined with DFT calculations substantiate that the hydrogenation of the C=O group consists of two pathways: water-mediated hydrogenation (predominant) and direct hydrogenation via H2 dissociation (secondary). In the former case, W5+-Ov site accelerates the activation adsorption of H2O, while Ir0 site facilitates the H-H bond cleavage of H2 and Irδ+ promotes the CAL adsorption. H2O molecule, as the source of hydrogen species, participates directly in the hydrogenation of the carbonyl group through a hydrogen-bonded network, with a largely reduced energy barrier relative to the H2 dissociation path. This work demonstrates a green catalytic route that breaks the activity-selectivity trade-off toward the selective hydrogenation of unsaturated aldehydes, which shows great potential in heterogeneous catalysis.

16.
Article En | MEDLINE | ID: mdl-38536957

O3-type layered oxide cathodes (NaxTMO2) for sodium-ion batteries (SIBs) have attracted significant attention as one of the most promising potential candidates for practical energy storage applications. The poor Na+ diffusion kinetics is, however, one of the major obstacles to advancing large-scale practical application. Herein, we report bismuth-doped O3-NaNi0.5Mn0.5O2 (NMB) microspheres consisting of unique primary nanoplatelets with the radially oriented {010} active lattice facets. The NMB combines the advantages of the oriented and exposed electrochemical active planes for direct paths of Na+ diffusion, and the thick primary nanoplatelets for less surface parasitic reactions with the electrolyte. Consequently, the NMB cathode exhibits a long-term stability with an excellent capacity retention of 72.5% at 1C after 300 cycles and an enhanced rate capability at a 0.1C to 10C rate (1C = 240 mA g-1). Furthermore, the enhancement is elucidated by the small volume change, thin cathode-electrolyte-interphase (CEI) layer, and rapid Na+ diffusion kinetics. In particular, the radial orientation-based Bi-doping strategy is demonstrated to be effective at boosting electrochemical performance in other layered oxides (such as Bi-doped NaNi0.45Mn0.45Ti0.1O2 and NaNi1/3Fe1/3Mn1/3O2). The results provide a promising strategy of utilizing the advantages of the oriented active facets of primary platelets and secondary particles to develop high-rate layered oxide cathodes for SIBs.

17.
J Am Chem Soc ; 146(9): 6345-6351, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38377535

Selenium (Se) discovered in 1817 belongs to the family of chalcogens. Surprisingly, despite the long history of over two centuries and the chemical simplicity of Se, the structure of amorphous Se (a-Se) remains controversial to date regarding the dominance of chains versus rings. Here, we find that vapor-deposited a-Se is composed of disordered rings rather than chains in melt-quenched a-Se. We further reveal that the main origin of this controversy is the facile transition of rings to chains arising from the inherent instability of rings. This transition can be inadvertently triggered by certain characterization techniques themselves containing above-bandgap illumination (above 2.1 eV) or heating (above 50 °C). We finally build a roadmap for obtaining accurate Raman spectra by using above-bandgap excitation lasers with low photon flux (below 1017 phs m-2 s-1) and below-bandgap excitation lasers measured at low temperatures (below -40 °C) to minimize the photoexcitation- and heat-induced ring-to-chain transitions.

18.
Nat Commun ; 15(1): 1342, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38351117

The rational design of efficient bifunctional single-atom electrocatalysts for industrial water splitting and the comprehensive understanding of its complex catalytic mechanisms remain challenging. Here, we report a Ni single atoms supported on oxygen-incorporated Mo2C via Ni-O-Mo bridge bonds, that gives high oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) bifunctional activity. By ex situ synchrotron X-ray absorption spectroscopy and electron microscopy, we found that after HER, the coordination number and bond lengths of Ni-O and Ni-Mo (Ni-O-Mo) were all altered, yet the Ni species still remain atomically dispersed. In contrast, after OER, the atomically dispersed Ni were agglomerated into very small clusters with new Ni-Ni (Ni-O-Ni) bonds appeared. Combining experimental results and DFT calculations, we infer the oxidation degree of Mo2C and the configuration of single-atom Ni are both vital for HER or OER. This study provides both a feasible strategy and model to rational design highly efficient electrocatalysts for water electrolysis.

19.
Small ; : e2310857, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38349039

Photocatalytic oxidative coupling of CH4 (OCM) is a promising CH4 conversion process that can achieve efficient methane conversion with the assistance of O2 . It remains to be highly challenging to improve the photocatalytic OCM activity from catalyst design and to deepen the understanding of the reactant activation in the OCM process. In this work, the Au-loaded ZnAl-layered double hydroxides (LDHs) with and without oxygen vacancy are constructed (denoted as Au/ZnAl and Au/ZnAl-v), respectively. When applied for photocatalytic OCM, the Au/ZnAl-v shows a CH4 conversion rate of 8.5 mmol g-1 h-1 with 92% selectivity of C2 H6 at 40 °C, outperforming most reported photocatalytic OCM systems at low temperature reported in the literature. Furthermore, the catalytic performance of Au/ZnAl-v can be stable for 100 h. In contrast, the An/ZnAl exhibits a CH4 conversion rate of 0.8 mmol g-1 h-1 with 46% selectivity of C2 H6 . Detailed characterizations and DFT calculation studies reveal that the introduced Ov sites on Au/ZnAl-v are able to activate O2 , and the resulting superoxide radical O2 ·- greatly promotes the activation of CH4 . The coupling of CH3 · groups with the assistance of Au cocatalyst leads to the formation of C2 H6 with high photocatalytic activity.

20.
Article En | MEDLINE | ID: mdl-38416632

This paper presents a reconfigurable near-sensor anomaly detection processor to real-time monitor the potential anomalous behaviors of amputees with limb prostheses. The processor is low-power, low-latency, and suitable for equipment on the prostheses and comprises a reconfigurable Variational Autoencoder (VAE), a scalable Self-Organizing Map (SOM) Array, and a window-size-adjustable Markov Chain, which can implement an integrated miniaturized anomaly detection system. With the reconfigurable VAE, the proposed processor can support up to 64 sensor sampling channels programmable by global configuration, which can meet the anomaly detection requirements in different scenarios. A scalable SOM array allows for the selection of different sizes based on the complexity of the data. Unlike traditional time accumulation-based anomaly detection methods, the Markov Chain is utilized to detect time-series-based anomalous data. The processor is designed and fabricated in a UMC 40-nm LP technology with a core area of 1.49 mm2 and a power consumption of 1.81 mW. It achieves real-time detection performance with 0.933 average F1 Score for the FSP dataset within 24.22 µs, and 0.956 average F1 Score for the SFDLA-12 dataset within 30.48 µs, respectively. The energy dissipation of detection for each input feature is 43.84 nJ with the FSP dataset, and 55.17 nJ with the SFDLA-12 dataset. Compared with ARM Cortex-M4 and ARM Cortex-M33 microcontrollers, the processor achieves energy and area efficiency improvements ranging from 257×, 193× and 11×, 8×, respectively.

...