Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioact Mater ; 37: 505-516, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38698917

RESUMEN

Tumor metabolite regulation is intricately linked to cancer progression. Because lactate is a characteristic metabolite of the tumor microenvironment (TME), it supports tumor progression and drives immunosuppression. In this study, we presented a strategy for antitumor therapy by developing a nanogold-engineered Rhodospirillum rubrum (R.r-Au) that consumed lactate and produced hydrogen for optical biotherapy. We leveraged a cryogenic micromolding approach to construct a transdermal therapeutic cryomicroneedles (CryoMNs) patch integrated with R.r-Au to efficiently deliver living bacterial drugs. Our long-term storage studies revealed that the viability of R.r-Au in CryoMNs remained above 90%. We found that the CryoMNs patch was mechanically strong and could be inserted into mouse skin. In addition, it rapidly dissolved after administering bacterial drugs and did not produce by-products. Under laser irradiation, R.r-Au effectively enhanced electron transfer through Au NPs actuation into the photosynthetic system of R. rubrum and enlarged lactate consumption and hydrogen production, thus leading to an improved tumor immune activation. Our study demonstrated the potential of CryoMNs-R.r-Au patch as a minimally invasive in situ delivery approach for living bacterial drugs. This research opens up new avenues for nanoengineering bacteria to transform tumor metabolites into effective substances for tumor optical biotherapy.

2.
Cell Rep ; 43(4): 114086, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38598335

RESUMEN

Immune checkpoint blockade (ICB) has revolutionized cancer therapy but only works in a subset of patients due to the insufficient infiltration, persistent exhaustion, and inactivation of T cells within a tumor. Herein, we develop an engineered probiotic (interleukin [IL]-12 nanoparticle Escherichia coli Nissle 1917 [INP-EcN]) acting as a living drug factory to biosynthesize anti-PD-1 and release IL-12 for initiating systemic antitumor immunity through T cell cascade regulation. Mechanistically, INP-EcN not only continuously biosynthesizes anti-PD-1 for relieving immunosuppression but also effectively cascade promote T cell activation, proliferation, and infiltration via responsive release of IL-12, thus reaching a sufficient activation threshold to ICB. Tumor targeting and colonization of INP-EcNs dramatically increase local drug accumulations, significantly inhibiting tumor growth and metastasis compared to commercial inhibitors. Furthermore, immune profiling reveals that anti-PD-1/IL-12 efficiently cascade promote antitumor effects in a CD8+ T cell-dependent manner, clarifying the immune interaction of ICB and cytokine activation. Ultimately, such engineered probiotics achieve a potential paradigm shift from T cell exhaustion to activation and show considerable promise for antitumor bio-immunotherapy.


Asunto(s)
Interleucina-12 , Probióticos , Receptor de Muerte Celular Programada 1 , Animales , Interleucina-12/metabolismo , Probióticos/farmacología , Ratones , Receptor de Muerte Celular Programada 1/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Humanos , Ratones Endogámicos C57BL , Línea Celular Tumoral , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Escherichia coli/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Nanopartículas , Femenino , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología
3.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119698, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387508

RESUMEN

The integrated landscape of ferroptosis regulatory patterns and their association with colon microenvironment have been demonstrated in recent studies. However, the ferroptosis-related immunotherapeutic signature for colon cancer (CC) remains unclear. We comprehensively evaluated 1623 CC samples, identified patterns of ferroptosis modification based on ferroptosis-associated genes, and systematically correlated these patterns with tumor microenvironment (TME) cell infiltration characteristics. In addition, the ferroptosis-regulated gene score (FRG-score) was constructed to quantify the pattern of ferroptosis alterations in individual tumors. Three distinct patterns of ferroptosis modification were identified, including antioxidant defense, iron toxicity, and lipid peroxidation. The characteristics of TME cell infiltration under these three patterns were highly consistent with the three immune phenotypes of tumors, including immune-inflamed, immune-excluded and immune-desert phenotypes. We also demonstrated that evaluation of ferroptosis regulatory patterns within individual tumors can predict tumor inflammatory status, tumor subtype, TME stromal activity, genetic variation, and clinical outcome. Immunotherapy cohorts confirmed that patients with low FRG-scores showed remarkable therapeutic and clinical benefits. Furthermore, the hub gene apolipoprotein L6 (APOL6), a drug-sensitive target associated with cancer cell ferroptosis, was identified through our proposed novel key gene screening process and validated in CC cell lines and scRNA-seq.


Asunto(s)
Neoplasias del Colon , Ferroptosis , Humanos , Ferroptosis/genética , Microambiente Tumoral/genética , Neoplasias del Colon/genética , Neoplasias del Colon/terapia , Antioxidantes , Inmunoterapia
4.
Biosci Trends ; 17(6): 503-507, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38072446

RESUMEN

The main technological difficulties of developing an intracellular (transmembrane) transport system for protein drugs lie in two points: i) overcoming the barriers in the cellular membrane, and ii) loading enough protein drugs, and particularly high-dose proteins, into particles. To address these two technological problems, we recently developed a novel cholesterol tag (C-Tag)-based transmembrane transport system. This pilot study found that the C-Tag dramatically improved the cellular uptake of Fab (902-fold, vs. Fab alone) into living cells, indicating that it successfully achieved transmembrane transport. Moreover, C-Tag-mediated membrane transport was verified using micron-scale large unilamellar vesicles (LUVs, approximately 1.5 µm)-based particles. The C-Tagged Fab was able to permeate the liposomal bilayer and it greatly enhanced (a 10.1-fold increase vs. Fab alone) internalization of proteins into the LUV-based particles, indicating that the C-Tag loaded enough proteins into particles for use of high-dose proteins. Accordingly, we established a novel C-Tag-based transport system that has overcome the known technological difficulties of protein transmembrane delivery, and this might be a useful technology for drug development in the future.


Asunto(s)
Colesterol , Liposomas , Proyectos Piloto , Transporte Biológico , Colesterol/metabolismo
5.
RSC Med Chem ; 14(12): 2473-2495, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38107167

RESUMEN

Recently nanoparticle-based platforms have gained interest as drug delivery systems and diagnostic agents, especially in cancer therapy. With their ability to provide preferential accumulation at target sites, nanocarrier-constructed antitumor drugs can improve therapeutic efficiency and bioavailability. In contrast, metal-organic frameworks (MOFs) have received increasing academic interest as an outstanding class of coordination polymers that combine porous structures with high drug loading via temperature modulation and ligand interactions, overcoming the drawbacks of conventional drug carriers. FeIII-based MOFs are one of many with high biocompatibility and good drug loading capacity, as well as unique Fenton reactivity and superparamagnetism, making them highly promising in chemodynamic and photothermal therapy, and magnetic resonance imaging. Given this, this article summarizes the applications of FeIII-based MOFs in three significant fields: chemodynamic therapy, photothermal therapy and MRI, suggesting a logical route to new strategies. This article concludes by summarising the primary challenges and development prospects in these promising research areas.

6.
Comput Biol Med ; 166: 107432, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37729701

RESUMEN

BACKGROUND: The development and progression of colorectal cancer (CRC) is closely associated with its complex tumor microenvironment (TME). Assessment of the modified pattern of immune cell infiltration (ICI) will help increase knowledge regarding the characteristics of TME infiltration. Yi-Yi-Fu-Zi-Bai-Jiang-San (YYFZBJS) has been shown to have positive effects on the regulation of the immune microenvironment of CRC. However, its pharmacological targets and molecular mechanisms remain to be elucidated. METHODS: Network pharmacological analysis was used to identify the target of YYFZBJS in the TME of CRC. Patients with the immune-inflamed phenotype (IIP) were identified using CRC samples from The Cancer Genome Atlas (TCGA) database. Consensus genes were identified by intersecting YYFZBJS targets, CRC disease targets and differentially expressed genes in the CRC microenvironment. Then, least absolute shrinkage and selection operator (LASSO) Cox analyses were used to identify a prognostic signature from the consensus genes. Cytoscape software was further used to build a unique herb-compound-target network diagram of the important components of YYFZBJS and prognostic gene targets. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was performed using the prognostic gene sets to explore the molecular mechanism of the prognostic genes in drug therapy for CRC IIP patients. Finally, single-cell analysis was performed to validate the expression of the prognostic genes in the TME of CRC using the TISCH2 database. RESULTS: A total of 284 IIP patients were identified from 480 patients with CRC. A total of 35 consensus genes were identified as targets of YYFZBJS in the TME of CRC patients. An eleven-gene prognostic signature, including PIK3CG, C5AR1, PRF1, CAV1, HPGDS, PTGS2, SERPINE1, IDO1, TGFB1, CXCR2 and MMP9, was identified from the consensus genes, with areas under the receiver operating characteristic (ROC) curve (AUCs) values of 0.84 and 0.793 for the training and test cohorts, respectively. In the herb-compound-target network, twenty-four compounds were shown to interact with the 11 prognostic genes, which were significantly enriched in the IL-17 signaling, arachidonic acid metabolism and metabolic pathways. Single-cell analysis of the prognostic genes confirmed that their abnormal expression was associated with the TME of CRC. CONCLUSION: This study organically integrated network pharmacology and bioinformatics analyses to identify prognostic genes in CRC IIP patients from the targets of YYFZBJS. Although this data mining work was limited to the study of mechanisms related to prognosis based on the immune microenvironment, the methodology provides new perspectives in the search for novel therapeutic targets of traditional Chinese medicines (TCMs) and accurate diagnostic indicators of cancers targeted by TCMs.

7.
Pharmaceutics ; 15(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37631285

RESUMEN

Metal-organic frameworks (MOFs) combined with sonodynamic therapy (SDT) have been introduced as a new and efficient treatment method. The critical advantage of SDT is its ability to penetrate deep tissues and concentrate energy on the tumor site to achieve a non-invasive or minimally invasive effect. Using a sonosensitizer to generate reactive oxygen species (ROS) under ultrasound is the primary SDT-related method of killing tumor cells. In the presence of a sonosensitizer, SDT exhibits a more lethal effect on tumors. The fast development of micro/nanotechnology has effectively improved the efficiency of SDT, and MOFs have been broadly evaluated in SDT due to their easy synthesis, easy surface functionalization, high porosity, and high biocompatibility. This article reviews the main mechanism of action of sonodynamic therapy in cancer treatment, and also reviews the applications of MOFs in recent years. The application of MOFs in sonodynamic therapy can effectively improve the targeting ability of SDT and the conversion ability of reactive oxygen species, thus improving their killing ability on cancer cells. This provides new ideas for the application of micro/nano particles in SDT and cancer therapy.

8.
Biosci Trends ; 17(3): 234-238, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37245987

RESUMEN

Detecting and appropriately diagnosing a Mycobacterium tuberculosis infection remains technologically difficult because the pathogen commonly hides in macrophages in a dormant state. Described here is novel near-infrared aggregation-induced-emission luminogen (AIEgen) labeling developed by the current authors' laboratory for point-of-care (POC) diagnosis of an M. tuberculosis infection. The selectivity of AIEgen labeling, the labeling of intracellular M. tuberculosis by AIEgen, and the labeling of M. tuberculosis in sputum samples by AIEgen, along with its accuracy, sensitivity, and specificity, were preliminarily evaluated. Results indicated that this near-infrared AIEgen labeling had satisfactory selectivity and it labeled intracellular M. tuberculosis and M. tuberculosis in sputum samples. It had a satisfactory accuracy (95.7%), sensitivity (95.5%), and specificity (100%) for diagnosis of an M. tuberculosis infection in sputum samples. The current results indicated that near-infrared AIEgen labeling might be a promising novel diagnostic tool for POC diagnosis of M. tuberculosis infection, though further rigorous verification of these findings is required.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Pulmonar , Tuberculosis , Humanos , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/microbiología , Sistemas de Atención de Punto , Tuberculosis/diagnóstico por imagen , Esputo/microbiología , Sensibilidad y Especificidad
9.
Sci Adv ; 9(8): eadc8978, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36812317

RESUMEN

A wide array of biocompatible micro/nanorobots are designed for targeted drug delivery and precision therapy largely depending on their self-adaptive ability overcoming complex barriers in vivo. Here, we report a twin-bioengine yeast micro/nanorobot (TBY-robot) with self-propelling and self-adaptive capabilities that can autonomously navigate to inflamed sites for gastrointestinal inflammation therapy via enzyme-macrophage switching (EMS). Asymmetrical TBY-robots effectively penetrated the mucus barrier and notably enhanced their intestinal retention using a dual enzyme-driven engine toward enteral glucose gradient. Thereafter, the TBY-robot was transferred to Peyer's patch, where the enzyme-driven engine switched in situ to macrophage bioengine and was subsequently relayed to inflamed sites along a chemokine gradient. Encouragingly, EMS-based delivery increased drug accumulation at the diseased site by approximately 1000-fold, markedly attenuating inflammation and ameliorating disease pathology in mouse models of colitis and gastric ulcers. These self-adaptive TBY-robots represent a safe and promising strategy for the precision treatment of gastrointestinal inflammation and other inflammatory diseases.


Asunto(s)
Sistemas de Liberación de Medicamentos , Macrófagos , Ratones , Animales , Inflamación , Modelos Animales de Enfermedad
10.
Adv Mater ; 35(18): e2211509, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36807373

RESUMEN

Despite its clinical success, chimeric antigen receptor T (CAR T)-cell immunotherapy remains limited in solid tumors, owing to the harsh physical barriers and immunosuppressive microenvironment. Here a CAR-T-cell-based live microrobot (M-CAR T) is created by decorating CAR T with immunomagnetic beads using click conjugation. M-CAR Ts are capable of magnetic-acoustic actuation for precision targeting and in situ activation of antitumor immune responses. Sequential actuation endows M-CAR Ts with magnetically actuated anti-flow and obstacle avoidance as well as tissue penetration driven by acoustic propulsion, enabling efficient migration and accumulation in artificial tumor models. In vivo, sequentially actuated M-CAR Ts achieves long-distance targeting and accumulate at the peritumoural area under programmable magnetic guidance, and subsequently acoustic tweezers actuate M-CAR Ts to migrate into deep tumor tissues, resulting in a 6.6-fold increase in accumulated exogenous CD8+ CAR T cells compared with that without actuation. Anti-CD3/CD28 immunomagnetic beads stimulate infiltrated CAR T proliferation and activation in situ, significantly enhancing their antitumor efficacy. Thus, this sequential-actuation-guided cell microrobot combines the merits of autonomous targeting and penetration of intelligent robots with in situ T-cell immunoactivation, and holds considerable promise for precision navigation and cancer immunotherapies.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Neoplasias/terapia , Fenómenos Magnéticos , Inmunoterapia Adoptiva , Linfocitos T , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Biomaterials ; 293: 121992, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36603445

RESUMEN

Sonodynamic therapy (SDT), a combination of low-intensity ultrasound with a sonosensitizer, has been explored as a promising alternative for cancer therapy. However, condensed extracellular matrix (ECM) resulting in poor perfusion and extreme hypoxia in solid tumor potentially compromises effective SDT. Herein, we develop a novel cleavable collagenase-assistant and O2-supplied nanosonosensitizer (FePO2@HC), which is embedded through fusing collagenase (CLG) and human serum albumin (HSA), followed by encapsulating Ferric protoporphyrin (FeP) and dioxygen. As a smart carrier, HSA is stimuli-responsive and collapsed by reduced glutathione (GSH) overexpressed in tumor, resulting to the release of the components in FePO2@HC. The released CLG acting as an artificial scissor, degrades the collagen fibers in tumor, thus, breaking tumor tissue and enhancing FePO2 accumulation in tumor inner with higher than that without CLG. Simultaneously, oxygen molecules are released from FePO2 in hypoxic environment and alleviate the tumor hypoxia. As a sonosensitizer, FeP is subsequently irradiated by ultrosound wave (US) and activates surrounding dioxygen to generate amount of singlet oxygen (1O2). Contributed from the ECM-degradation, such SDT-based nanosystem with increased sonosensitizer permeability and oxygen content highly improved the tumor inhibition efficacy without toxic effects. This study presents a new paradigm for ECM depletion-based strategy of deep-seated penetration, and will expand the nanomedicine application of metalloporphyrin sonosensitizers in SDT.


Asunto(s)
Metaloporfirinas , Nanopartículas , Neoplasias , Terapia por Ultrasonido , Humanos , Neoplasias/terapia , Neoplasias/patología , Oxígeno/metabolismo , Colagenasas , Línea Celular Tumoral , Especies Reactivas de Oxígeno
12.
Biosci Trends ; 16(6): 447-450, 2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36504072

RESUMEN

Chlorine dioxide (ClO2) is a high-level disinfectant that is safe and widely used for sterilization. Due to the limitations on preparing a stable solution, direct use of ClO2 in the human body is limited. Nasal irrigation is an alternative therapy used to treat respiratory infectious diseases. This study briefly summarizes the available evidence regarding the safety/efficacy of directly using ClO2 on the human body as well as the approach of nasal irrigation to treat COVID-19. Based on the available information, as well as a preliminary experiment that comprehensively evaluated the efficacy and safety of ClO2, 25-50 ppm was deemed to be an appropriate concentration of ClO2 for nasal irrigation to treat COVID-19. This finding requires further verification. Nasal irrigation with ClO2 can be considered as a potential alternative therapy to treat respiratory infectious diseases, and COVID-19 in particular.


Asunto(s)
COVID-19 , Compuestos de Cloro , Enfermedades Transmisibles , Humanos , Óxidos/uso terapéutico , Compuestos de Cloro/farmacología , Compuestos de Cloro/uso terapéutico , Lavado Nasal (Proceso)
13.
Biosci Trends ; 16(6): 451-454, 2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36504073

RESUMEN

A saline gargle (SG) has proven to be an efficient method of sampling to detect SARS-CoV-2. The aim of this pilot study was to verify the efficiency of SG sampling in detecting the Omicron variant of SARS-CoV-2. Subjects were a total of 68 patients with COVID-19 (Omicron variant), and 167 pairs of samples were collected. A conventional oropharyngeal swab (OPS) was obtained and SG sampling was performed immediately afterward; both were subjected to RT-qPCR. A subgroup analysis of symptomatic and asymptomatic patients was performed. Results revealed no significant differences in the distribution of patients and cycle threshold (CT) values between the SG and OPS in overall data and data on days 1-3, 4-7, and 8-14. The subgroup analysis revealed no significant differences between the SG and OPS results in symptomatic patients. In asymptomatic patients, the CT values for the SG were significantly lower than those for the OPS, implying that SG sampling had better sensitivity in the context of the Omicron variant. These data indicate that the SG had satisfactory efficiency (vs. the OPS). An SG is a simple and less invasive method of sampling that is suited to mass, frequent, and repeated sampling to detect SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Proyectos Piloto , COVID-19/diagnóstico
14.
Biomaterials ; 281: 121341, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34995901

RESUMEN

Although chimeric antigen receptor T (CAR T) cell immunotherapy has demonstrated remarkable success in clinical, therapeutic effects are still limited in solid tumor due to lack of activated T cell infiltration in immunosuppression of tumor microenvironment. Herein, we develop IL-12 nanostimulant-engineered CAR T cell (INS-CAR T) biohybrids for boosting antitumor immunity of CAR T cells via immunofeedback. As stimulating nanochaperone, IL-12-loaded human serum albumin (HSA) nanoparticles are effectively conjugated onto CAR T cells via bioorthogonal chemistry without influencing their antitumor capabilities. IL-12 is responsively released from INS-CAR T biohybrids in presence of the increased thiol groups on cell-surface triggered by tumor antigens. In return, released IL-12 obviously promotes the secretion of CCL5, CCL2 and CXCL10, which further selectively recruits and expands CD8+ CAR T cells in tumors. Ultimately, the immune-enhancing effects of IL-12 nanochaperone significantly boost CAR T cell antitumor capabilities, dramatically eliminated solid tumor and minimized unwanted side effects. Hence, immunofeedback INS-CAR T biohybrids, which include INS that serves as an intelligent 'nanochaperone', could provide a powerful tool for efficient and safe antitumor immunotherapy.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia , Inmunoterapia Adoptiva , Interleucina-12 , Neoplasias/terapia , Linfocitos T , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Adv Mater ; 33(50): e2100241, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34121236

RESUMEN

Numerous clinical trials for cancer precision medicine research are limited due to the drug resistance, side effects, and low efficacy. Unsatisfactory outcomes are often caused by complex physiologic barriers and abnormal immune events in tumors, such as tumor target alterations and immunosuppression. Cell/bacteria-derived materials with unique bioactive properties have emerged as attractive tools for personalized therapy in cancer. Naturally derived bioactive materials, such as cell and bacterial therapeutic agents with native tropism or good biocompatibility, can precisely target tumors and effectively modulate immune microenvironments to inhibit tumors. Here, the recent advances in the development of cell/bacteria-based bioactive materials for immune modulation and precision therapy in cancer are summarized. Cell/bacterial constituents, including cell membranes, bacterial vesicles, and other active substances have inherited their unique targeting properties and antitumor capabilities. Strategies for engineering living cell/bacteria to overcome complex biological barriers and immunosuppression to promote antitumor efficacy are also summarized. Moreover, past and ongoing trials involving personalized bioactive materials and promising agents such as cell/bacteria-based micro/nano-biorobotics are further discussed, which may become another powerful tool for treatment in the near future.


Asunto(s)
Sistemas de Liberación de Medicamentos , Neoplasias , Bacterias , Humanos , Terapia de Inmunosupresión , Neoplasias/tratamiento farmacológico , Medicina de Precisión , Microambiente Tumoral
16.
Small ; 17(14): e2007494, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33711191

RESUMEN

Chimeric antigen receptor T cell (CAR-T) therapy has shown remarkable clinical success in eradicating hematologic malignancies. However, hostile microenvironment in solid tumors severely prevents CAR-T cells migrating, infiltrating, and killing. Herein, a nanoengineered CAR-T strategy is reported for enhancing solid tumor therapy through bioorthogonal conjugation with a nano-photosensitizer (indocyanine green nanoparticles, INPs) as a microenvironment modulator. INPs engineered CAR-T biohybrids (CT-INPs) not only retain the original activities and functions of CAR-T cells, but it is further armed with fluorescent tracing and microenvironment remodeling abilities. Irradiated with laser, CT-INPs demonstrate that mild photothermal intervention destroys the extracellular matrix, expanded blood vessels, loosened compact tissue, and stimulated chemokine secretion without damping CAR-T cell activities. Those regulations induce an immune-favorable tumor microenvironment for recruitment and infiltration of CT-INPs. CT-INPs triggered photothermal effects collapse the physical and immunological barriers of solid tumor, and robustly boosted CAR-T immunotherapy. Therefore, CAR-T biohybrids provide reliable treatment strategy for solid tumor immunotherapy via microenvironment reconstruction.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva , Neoplasias/terapia , Linfocitos T , Microambiente Tumoral
17.
Biomaterials ; 269: 120639, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33434714

RESUMEN

Sonodynamic therapy (SDT) is a promising approach for tumor treatment because of the noninvasion, and future would be perfect while it activates systemic immune responses through deep penetration to effectively avoid tumor recurrence. Here, a multifunctional nanosonosensitizer system (FA-MnPs) is designed by encapsulating manganese-protoporphyrin (MnP) into folate-liposomes. The nanoparticles of FA-MnPs not only exhibit excellent depth-responsive SDT but also simultaneously activate SDT-mediated immune response. Under US irradiation, FA-MnPs show the high acoustic intensity in mimic tissue up to 8 cm depth and generate amount of singlet oxygen (1O2). Density functional theory (DFT) calculations reveal that metal coordination in MnP has enhanced the US response ability. The good depth-responsed SDT of FA-MnPs efficiently suppresses the growth of not only the superficial tumors but also the deep lesion in the triple-negative breast cancer (TNBC) mice model. Importantly, FA-MnPs-induced SDT further re-polarizes immunosuppressive M2 macrophages to antitumor M1 macrophages, and elicits immunogenic cell death (ICD) to activate dendritic cells, T lymphocytes, and natural killercells (NK), which consequently trigger the antitumor immune, contributing to the tumor growth inhibition. This study put forward an idea for curing deep-seated and metastatic tumors through noninvasively depth-irradiated immunogenic SDT by reasonably designing multifunctional sonosensitizers.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Terapia por Ultrasonido , Animales , Línea Celular Tumoral , Humanos , Liposomas , Ratones , Recurrencia Local de Neoplasia , Protoporfirinas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
18.
Bioact Mater ; 6(4): 951-962, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33102938

RESUMEN

The adoptive transfer of chimeric antigen receptor-T (CAR-T) cells has shown remarkable clinical responses in hematologic malignancies. However, unsatisfactory curative results and side effects for tumor treatment are still unsolved problems. Herein we develop a click CAR-T cell engineering strategy via cell glycometabolic labeling for robustly boosting their antitumor effects and safety in vivo. Briefly, paired chemical groups (N3/BCN) are separately incorporated into CAR-T cell and tumor via nondestructive intrinsic glycometabolism of exogenous Ac4GalNAz and Ac4ManNBCN, serving as an artificial ligand-receptor. Functional groups anchored on cell surface strengthen the interaction of CAR-T cell and tumor via bioorthogonal click chemistry, further enhancing specific recognition, migration and selective antitumor effects of CAR-T cells. In vivo, click CAR-T cell completely removes lymphoma cells and minimizes off-target toxicity via selective and efficient bioorthogonal targeting in blood cancer. Surprisingly, compared to unlabeled cells, artificial bioorthogonal targeting significantly promotes the accumulation, deep penetration and homing of CAR-T cells into tumor tissues, ultimately improving its curative effect for solid tumor. Click CAR-T cell engineering robustly boosts selective recognition and antitumor capabilities of CAR T cells in vitro and in vivo, thereby holding a great potential for effective clinical cell immunotherapy with avoiding adverse events in patients.

19.
Biomed Opt Express ; 11(8): 4203-4223, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32923037

RESUMEN

This study investigates the fluence rate effect, an essential modulating mechanism of photodynamic therapy (PDT), by using photoacoustic imaging method. To the best of our knowledge, this is the first time that the fluence rate dependence is investigated at a microscopic scale, as opposed to previous studies that are based on tumor growth/necrosis or animal surviving rate. This micro-scale examination enables subtle biological responses, including the vascular damage and the self-healing response, to be studied. Our results reveal the correlations between fluence rate and PDT efficacy/self-healing magnitude, indicating that vascular injuries induced by high fluence rates are more likely to recover and by low fluence rates (≤126 mW/cm2) are more likely to be permanent. There exists a turning point of fluence rate (314 mW/cm2), above which PDT practically produces no permanent therapeutic effect and damaged vessels can fully recover. These findings have practical significance in clinical setting. For cancer-related diseases, the 'effective fluence rate' is useful to provoke permanent destruction of tumor vasculature. Likewise, the 'non effective range' can be applied when PDT is used in applications such as opening the blood brain barrier to avoid permanent brain damage.

20.
J Control Release ; 323: 387-397, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32330573

RESUMEN

Chemotherapy is an important modality available for cancer treatment. However, the present chemotherapy is still far from being satisfactory mainly owing to the severe side effects of the chemotherapeutic agents and drug resistance of cancer cells. Thus, reversing drug resistance by constructing an ideal chemotherapeutic strategy with the least side effects and the best efficacy is greatly needed. Here, we designed a smart nanosystem of thermo-sensitive liposome coated gold nanocages with doxorubicin (DOX) loading (LAD) for near-infrared (NIR)-triggered drug release and chemo-photothermal combination therapy. The biocompatible liposomes coating facilitated the cellular uptake of LAD and meanwhile avoided drug leakage during the circulation. More importantly, LAD exhibited controllable photothermal conversion property and produced mild heat under NIR irradiation, which not only triggered DOX release and transferred DOX from lysosome to nucleus, but also elicited the mild heat cell killing effect to improve the curative efficiency. Further mechanism study revealed that mild heat could reverse drug resistance by down-regulation of the chemoresistance-related markers (e.g., HSF-1, p53, P-gp), and inhibited DOX export and increased drug sensitiveness, thereby prominently increased the anticancer efficiency. This versatile nanoplatform with enhanced curative efficacy and lower side effect is promising to apply in the field of drug controlled release and combination tumor therapy.


Asunto(s)
Oro , Hipertermia Inducida , Línea Celular Tumoral , Doxorrubicina , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Resistencia a Antineoplásicos , Calor , Fototerapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...