Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 35
1.
Photodiagnosis Photodyn Ther ; 45: 103928, 2024 Feb.
Article En | MEDLINE | ID: mdl-38070633

BACKGROUND: The treatment of acne vulgaris is often challenging due to the antibiotic resistance frequently observed in Cutibacterium acnes (C.acnes), a prevalent bacterium linked to this condition. OBJECTIVE: The objective of this research was to examine the impact of curcumin photodynamic therapy (PDT) on the survival of C.acnes and activity of biofilms produced by this microorganism. METHODS: Following the Clinical and Laboratory Standards Institute (CLSI) guidelines, we assessed the drug sensitivity of 25 clinical C.acnes strains to five antibiotics (erythromycin, clindamycin, tetracycline, doxycycline, minocycline) and curcumin by implementing the broth microdilution technique. In addition, we established C.acnes biofilms in a laboratory setting and subjected them to curcumin-PDT(curcumin combined with blue light of 180 J/cm2). Afterwards, we evaluated their viability using the XTT assay and observed them using confocal laser scanning microscopy. RESULTS: The result revealed varying resistance rates among the tested antibiotics and curcumin, with erythromycin, clindamycin, tetracycline, doxycycline, minocycline, and curcumin exhibiting resistance rates of 72 %, 44 %, 36 %, 28 %, 0 %, and 100 %, respectively. In the curcumin-PDT inhibition tests against four representative antibiotic-resistant strains, it was found that the survival rate of all strains of planktonic C. acnes was reduced, and the higher the concentration of curcumin, the lower the survival rate. Furthermore, in the biofilm inhibition tests, the vitality and three-dimensional structure of the biofilms were disrupted, and the inhibitory effect became more significant with higher concentrations of curcumin. CONCLUSION: The results emphasize the possibility of using curcumin PDT as an alternative approach for the treatment of C.acnes, especially in instances of antibiotic-resistant variations and infections related to biofilms.


Acne Vulgaris , Curcumin , Photochemotherapy , Humans , Clindamycin/pharmacology , Clindamycin/therapeutic use , Doxycycline/pharmacology , Doxycycline/therapeutic use , Curcumin/pharmacology , Curcumin/therapeutic use , Minocycline/pharmacology , Minocycline/therapeutic use , Microbial Sensitivity Tests , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photochemotherapy/methods , Acne Vulgaris/drug therapy , Anti-Bacterial Agents/therapeutic use , Erythromycin/pharmacology , Erythromycin/therapeutic use , Tetracycline/pharmacology , Tetracycline/therapeutic use , Biofilms , Propionibacterium acnes
2.
Int Immunopharmacol ; 127: 111424, 2024 Jan 25.
Article En | MEDLINE | ID: mdl-38141413

Acne is a chronic inflammatory skin disease, and the pathogenesis of acne induced by Cutibacterium acnes (C.acnes) is not well understood. Recently, circular RNAs (circRNAs) have attracted much attention because of its involvement in various diseases. However, the mechanisms by which circRNAs regulated acne have rarely been reported. We identified several differentially expressed circRNAs by sequencing patient-derived acne tissues. Among them, hsa_circ_0105040 was determined to be low expressed in acne tissues and localized in the cytoplasm of human primary keratinocytes. We established a C.acnes biofilms model of acne in vitro and showed that hsa_circ_0105040 promoted inflammation via MAPK and NF-κB pathway. Mechanistically, hsa_circ_0105040 could directly bind to miR-146a and inhibit the expression of miR-146a. Moreover, hsa_circ_0105040 promoted the expression of IRAK1 and TRAF6 by sponging miR-146a, thereby elevating the level of inflammation in acne. Collectively, our data suggested that hsa_circ_0105040- miR-146a -IRAK1/TRAF6 axis was involved in regulating the inflammatory response in acne, which provided a potential therapeutic target for acne and a novel insight into the pathogenesis of inflammatory acne.


Acne Vulgaris , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/metabolism , Keratinocytes/metabolism , Inflammation/genetics , Acne Vulgaris/genetics , Biofilms
3.
J Innate Immun ; 15(1): 822-835, 2023.
Article En | MEDLINE | ID: mdl-37903473

INTRODUCTION: CircRNAs are closely related to many human diseases; however, their role in acne remains unclear. This study aimed to determine the role of hsa_circ_0102678 in regulating inflammation of acne. METHODS: First, microarray analysis was performed to study the expression of circRNAs in acne. Subsequently, RNase R digestion assay and fluorescence in situ hybridization assay were utilized to confirm the characteristics of hsa_circ_0102678. Finally, qRT-PCR, Western blotting analysis, immunoprecipitation, luciferase reporter assay, circRNA probe pull-down assay, biotin-labeled miRNA pull-down assay, RNA immunoprecipitation assay, and m6A dot blot assay were utilized to reveal the functional roles of hsa_circ_0102678 on inflammation induced by C. acnes biofilm in human primary keratinocytes. RESULTS: Our investigations showed that the expression of hsa_circ_0102678 was significantly decreased in acne tissues, and hsa_circ_0102678 was a type of circRNAs, which was mainly localized in the cytoplasm of primary human keratinocytes. Moreover, hsa_circ_0102678 remarkably affected the expression of IL-8, IL-6, and TNF-α, which induced by C. acnes biofilm. Importantly, mechanistic studies indicated that the YTHDC1 could bind directly to hsa_circ_0102678 and promote the export of N6-methyladenosine-modified hsa_circ_0102678 to the cytoplasm. Besides, hsa_circ_0102678 could bind to miR-146a and sponge miR-146a to promote the expression of IRAK1 and TRAF6. CONCLUSION: Our findings revealed a previously unknown process by which hsa_circ_0102678 promoted keratinocyte inflammation induced by C. acnes biofilm via regulating miR-146a/TRAF6 and IRAK1 axis.


Acne Vulgaris , Intracellular Signaling Peptides and Proteins , Nerve Tissue Proteins , Propionibacteriaceae , RNA Splicing Factors , RNA, Circular , Humans , Propionibacteriaceae/physiology , Acne Vulgaris/immunology , Acne Vulgaris/microbiology , Cells, Cultured , Keratinocytes/immunology , Keratinocytes/microbiology , RNA, Circular/genetics , Down-Regulation , Inflammation/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Biological Transport, Active , RNA Splicing Factors/metabolism , Nerve Tissue Proteins/metabolism
4.
Curr Microbiol ; 80(10): 334, 2023 Sep 02.
Article En | MEDLINE | ID: mdl-37659001

Aspergillus fumigatus biofilm development results in enhanced pathogenicity and treatment resistance. Most contemporary antibiotics, however, are unable to eliminate biofilms. In recent years, with the application of new photosensitizers and the development of treatment, ALA-PDT (5-aminolevulinic acid photodynamic treatment) has achieved remarkable curative effect in the treatment of fungal infectious diseases; however, no research has been conducted on ALA-PDT against A. fumigatus. This study investigated the inhibitory effect of ALA-PDT at various 5-aminolevulinic acid concentrations and light doses on A. fumigatus planktonic and biofilms in vitro. We found that ALA-PDT may successfully inhibit the development of A. fumigatus biofilm and disintegrate mature biofilm. After ALA-PDT treatment, the adherence rate and vitality dramatically decreased, and the biofilm's structure was severely compromised. Our findings show for the first time that ALA-PDT may be used to prevent the formation of A. fumigatus biofilm and disturb the structure of mature biofilm, and that it could be employed as a therapeutic therapy for A. fumigatus superficial infection.


Aspergillosis , Photochemotherapy , Aminolevulinic Acid/pharmacology , Aspergillus fumigatus , Biofilms
5.
Biochim Biophys Acta Rev Cancer ; 1878(6): 188971, 2023 11.
Article En | MEDLINE | ID: mdl-37640147

3-phosphoinositide-dependent protein kinase 1 (PDK1) is considered as master kinase regulating AGC kinase family members such as AKT, SGK, PLK, S6K and RSK. Although autophosphorylation regulates PDK1 activity, accumulating evidence suggests that PDK1 is manipulated by many other mechanisms, including S6K-mediated phosphorylation, and the E3 ligase SPOP-mediated ubiquitination and degradation. Dysregulation of these upstream regulators or downstream signals involves in cancer development, as PDK1 regulating cell growth, metastasis, invasion, apoptosis and survival time. Meanwhile, overexpression of PDK1 is also exposed in a plethora of cancers, whereas inhibition of PDK1 reduces cell size and inhibits tumor growth and progression. More importantly, PDK1 also modulates the tumor microenvironments and markedly influences tumor immunotherapies. In summary, we comprehensively summarize the downstream signals, upstream regulators, mouse models, inhibitors, tumor microenvironment and clinical treatments for PDK1, and highlight PDK1 as a potential cancer therapeutic target.


Neoplasms , Protein Serine-Threonine Kinases , Animals , Mice , Protein Serine-Threonine Kinases/metabolism , Protein Kinases/metabolism , Phosphorylation , Neoplasms/genetics , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Tumor Microenvironment
6.
Reprod Biol Endocrinol ; 21(1): 36, 2023 Apr 11.
Article En | MEDLINE | ID: mdl-37041518

BACKGROUND: Retinoic acid (RA) plays important role in the maintenance and differentiation of the Müllerian ducts during the embryonic stage via RA receptors (RARs). However, the function and mechanism of RA-RAR signaling in the vaginal opening are unknown. METHOD: We used the Rarα knockout mouse model and the wild-type ovariectomized mouse models with subcutaneous injection of RA (2.5 mg/kg) or E2 (0.1 µg/kg) to study the role and mechanism of RA-RAR signaling on the vaginal opening. The effects of Rarα deletion on Ctnnb1 mRNA levels and cell apoptosis in the vaginas were analyzed by real-time PCR and immunofluorescence, respectively. The effects of RA on the expression of ß-catenin and apoptosis in the vaginas were analyzed by real-time PCR and western blotting. The effects of E2 on RA signaling molecules were analyzed by real-time PCR and western blotting. RESULTS: RA signaling molecules were expressed in vaginal epithelial cells, and the mRNA and/or protein levels of RALDH2, RALDH3, RARα and RARγ reached a peak at the time of vaginal opening. The deletion of Rarα resulted in 25.0% of females infertility due to vaginal closure, in which the mRNA (Ctnnb1, Bak and Bax) and protein (Cleaved Caspase-3) levels were significantly decreased, and Bcl2 mRNA levels were significantly increased in the vaginas. The percentage of vaginal epithelium with TUNEL- and Cleaved Caspase-3-positive signals were also significantly decreased in Rarα-/- females with vaginal closure. Furthermore, RA supplementation of ovariectomized wild-type (WT) females significantly increased the expression of ß-catenin, active ß-catenin, BAK and BAX, and significantly decreased BCL2 expression in the vaginas. Thus, the deletion of Rarα prevents vaginal opening by reducing the vaginal ß-catenin expression and epithelial cell apoptosis. The deletion of Rarα also resulted in significant decreases in serum estradiol (E2) and vagina Raldh2/3 mRNA levels. E2 supplementation of ovariectomized WT females significantly increased the expression of RA signaling molecules in the vaginas, suggesting that the up-regulation of RA signaling molecules in the vaginas is dependent on E2 stimulation. CONCLUSION: Taken together, we propose that RA-RAR signaling in the vaginas promotes vaginal opening through increasing ß-catenin expression and vaginal epithelial cell apoptosis.


Tretinoin , beta Catenin , Female , Mice , Animals , Tretinoin/pharmacology , Caspase 3/metabolism , beta Catenin/metabolism , bcl-2-Associated X Protein , Retinoic Acid Receptor alpha/metabolism , Epithelial Cells/metabolism , Vagina , RNA, Messenger/metabolism , Apoptosis , Aldehyde Oxidoreductases/metabolism
7.
Int J Mol Sci ; 24(4)2023 Feb 04.
Article En | MEDLINE | ID: mdl-36834527

Porcine spermatozoa are stored in the oviductal isthmus after natural mating, and the number of spermatozoa is increased in the oviductal ampulla when the mature cumulus-oocyte complexes (COCs) are transferred into the ampulla. However, the mechanism is unclear. Herein, natriuretic peptide type C (NPPC) was mainly expressed in porcine ampullary epithelial cells, whereas its cognate receptor natriuretic peptide receptor 2 (NPR2) was located on the neck and the midpiece of porcine spermatozoa. NPPC increased sperm motility and intracellular Ca2+ levels, and induced sperm release from oviduct isthmic cell aggregates. These actions of NPPC were blocked by the cyclic guanosine monophosphate (cGMP)-sensitive cyclic nucleotide-gated (CNG) channel inhibitor l-cis-Diltiazem. Moreover, porcine COCs acquired the ability to promote NPPC expression in the ampullary epithelial cells when the immature COCs were induced to maturation by epidermal growth factor (EGF). Simultaneously, transforming growth factor-ß ligand 1 (TGFB1) levels were dramatically increased in the cumulus cells of the mature COCs. The addition of TGFB1 promoted NPPC expression in the ampullary epithelial cells, and the mature COC-induced NPPC was blocked by the transforming growth factor-ß type 1 receptor (TGFBR1) inhibitor SD208. Taken together, the mature COCs promote NPPC expression in the ampullae via TGF-ß signaling, and NPPC is required for the release of porcine spermatozoa from the oviduct isthmic cells.


Oocytes , Sperm Motility , Female , Humans , Male , Swine , Animals , Oocytes/metabolism , Semen , Oviducts , Spermatozoa , Transforming Growth Factors/metabolism , Natriuretic Peptides/metabolism
8.
Nat Commun ; 14(1): 930, 2023 02 18.
Article En | MEDLINE | ID: mdl-36805455

There is a growing interest in the role of timing of daily behaviors in improving health. However, little is known about the optimal timing of physical activity to maximize health benefits. We perform a cohort study of 92,139 UK Biobank participants with valid accelerometer data and all-cause and cause-specific mortality outcomes, comprising over 7 years of median follow-up (638,825 person-years). Moderate-to-vigorous intensity physical activity (MVPA) at any time of day is associated with lower risks for all-cause, cardiovascular disease, and cancer mortality. In addition, compared with morning group (>50% of daily MVPA during 05:00-11:00), midday-afternoon (11:00-17:00) and mixed MVPA timing groups, but not evening group (17:00-24:00), have lower risks of all-cause and cardiovascular disease mortality. These protective associations are more pronounced among the elderly, males, less physically active participants, or those with preexisting cardiovascular diseases. Here, we show that MVPA timing may have the potential to improve public health.


Cardiovascular Diseases , Aged , Male , Humans , Cause of Death , Cohort Studies , Prospective Studies , Exercise
9.
Photodiagnosis Photodyn Ther ; 40: 103204, 2022 Dec.
Article En | MEDLINE | ID: mdl-36403927

BACKGROUND: Curcumin has been employed as a photosensitizer agent during photodynamic therapy (PDT). Cutibacterium acnes (C. acnes) can cause an inflammatory response in human keratinocytes; however, no research has been conducted to determine whether curcumin and its photodynamic properties can prevent this inflammatory reaction. OBJECTIVE: We hypothesized that curcumin may control the C. acnes biofilm-induced inflammatory response in keratinocytes, either alone or in combination with blue light photodynamic therapy. METHODS: Following C. acnes biofilm stimulation, human primary keratinocytes were treated with 20 µM curcumin solution alone or 5 µM curcumin with combined blue light irradiation. The amount of secreted protein was measured using an ELISA kit. The expression levels of Toll-like receptor 2 (TLR2) and its downstream proteins were determined using western blot. RESULTS: Treatment with 20 µM curcumin, but not 5 µM curcumin, reduced the inflammatory response to C. acnes biofilms in keratinocytes by blocking the TLR2/MAPK/NF-κB pathway. Interestingly, 5 µM curcumin combined with blue light also reduced the C. acnes biofilm-induced inflammation indicated above by blocking the TLR2/MAPK/NF-κB pathway. CONCLUSION: Curcumin alone, in sufficient concentrations, or low-concentration curcumin with blue light had anti-inflammatory activity on keratinocytes stimulated by C. acnes biofilms through inhibition of MAPK and NF-κB signaling pathways by downregulating TLR2 expression.


Curcumin , Photochemotherapy , Humans , NF-kappa B/metabolism , Curcumin/pharmacology , Photochemotherapy/methods , Propionibacterium acnes/metabolism , Keratinocytes/metabolism , Inflammation
10.
Mycopathologia ; 187(5-6): 517-526, 2022 Dec.
Article En | MEDLINE | ID: mdl-36219382

Aspergillus spp. is the most common clinical pathogen of invasive fungal infection with high mortality. Existing treatments for Aspergillus spp. infection are still inefficient and accompanied by drug resistance, so it is still urgent to find new treatment approaches. The antiarrhythmic drug amiodarone (AMD) has demonstrated antifungal activity against a range of fungi. This study evaluated the efficacy of AMD in combination with triazoles for Aspergillus spp. infection. We tested the combined effect of AMD and three triazole drugs, namely, itraconazole (ITR), voriconazole (VRC), and posaconazole (POS), on the planktonic cells and biofilms of 20 strains of Aspergillus spp. via a checkerboard microdilution assay derived from 96-well plate-based method. Our results reveal that the combination of AMD with ITR or POS against Aspergillus biofilms has synergistic fungicidal effects. By contrast, the combination of AMD with VRC exhibits no antagonistic and synergistic effects. In this way, the use of AMD in combination with ITR or POS could be an effective adjunctive treatment for Aspergillus spp. infection.


Amiodarone , Aspergillosis , Azoles/pharmacology , Azoles/therapeutic use , Plankton , Amiodarone/pharmacology , Amiodarone/therapeutic use , Microbial Sensitivity Tests , Aspergillus , Voriconazole/pharmacology , Voriconazole/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Itraconazole/pharmacology , Itraconazole/therapeutic use , Aspergillosis/drug therapy , Aspergillosis/microbiology , Biofilms
11.
Biol Reprod ; 107(4): 1059-1071, 2022 10 11.
Article En | MEDLINE | ID: mdl-35871551

In mammals, dormant primordial follicles represent the ovarian reserve throughout reproductive life. In vitro activation of dormant primordial follicles has been used to treat patients with premature ovarian insufficiency (POI). However, there remains a lack of effective strategies to stimulate follicle activation in vivo. In this study, we used an in vitro ovarian culture system and intraperitoneal injection to study the effect of lithium treatment on primordial follicle activation. Lithium increased the number of growing follicles in cultured mouse ovaries and promoted pre-granulosa cell proliferation. Furthermore, lithium significantly increased the levels of phosphorylated protein kinase B (Akt) and the number of oocytes with forkhead Box O3a (FOXO3a) nuclear export. Inhibition of the phosphatidylinositol 3 kinase (PI3K)/Akt pathway by LY294002 reversed lithium-promoted mouse primordial follicle activation. These results suggest that lithium promotes mouse primordial follicle activation by the PI3K/Akt signaling. Lithium also promoted primordial follicle activation and increased the levels of p-Akt in mouse ovaries in vivo and in human ovarian tissue cultured in vitro. Taken together, lithium promotes primordial follicle activation in mice and humans by the PI3K/Akt signaling. Lithium might be a potential oral drug for treating infertility in POI patients with residual dormant primordial follicles.


Primary Ovarian Insufficiency , Proto-Oncogene Proteins c-akt , Animals , Female , Humans , Lithium/metabolism , Lithium/pharmacology , Lithium Compounds/metabolism , Lithium Compounds/pharmacology , Mammals/metabolism , Mice , Oocytes/metabolism , Ovarian Follicle/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism
12.
Cell Death Dis ; 13(1): 87, 2022 01 27.
Article En | MEDLINE | ID: mdl-35087042

In mammals, nonrenewable primordial follicles are activated in an orderly manner to maintain the longevity of reproductive life. Mammalian target of rapamycin (mTOR)-KIT ligand (KITL) signaling in pre-granulosa cells and phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-forkhead Box O3a (FOXO3a) signaling in oocytes are important for primordial follicle activation. The activation process is accompanied by the enhancement of energy metabolism, but the causal relationship is unclear. In the present study, the levels of glycolysis-related proteins GLUT4, HK1, PFKL, and PKM2 were significantly increased in granulosa cells but were decreased in oocytes during the mouse primordial-to-primary follicle transition. Both short-term pyruvate deprivation in vitro and acute fasting in vivo increased the glycolysis-related gene and protein levels, decreased AMPK activity, and increased mTOR activity in mouse ovaries. The downstream pathways Akt and FOXO3a were phosphorylated, resulting in mouse primordial follicle activation. The blockade of glycolysis by 2-deoxyglucose (2-DG), but not the blockade of the communication network between pre-granulosa cells and oocyte by KIT inhibitor ISCK03, decreased short-term pyruvate deprivation-promoted mTOR activity. Glycolysis was also increased in human granulosa cells during the primordial-to-primary follicle transition, and short-term pyruvate deprivation promoted the activation of human primordial follicles by increasing the glycolysis-related protein levels and mTOR activity in ovarian tissues. Taken together, the enhanced glycolysis in granulosa cells promotes the activation of primordial follicles through mTOR signaling. These findings provide new insight into the relationship between glycolytic disorders and POI/PCOS.


Granulosa Cells , TOR Serine-Threonine Kinases , Animals , Female , Glycolysis , Granulosa Cells/metabolism , Mammals , Mice , Oocytes/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pyruvic Acid/metabolism , TOR Serine-Threonine Kinases/metabolism
13.
J Coll Physicians Surg Pak ; 32(12): SS111-SS112, 2022 12.
Article En | MEDLINE | ID: mdl-36597308

Necrotizing fasciitis (NF) is a rare and life-threatening infection of soft tissue characterised by rapid and extensive destruction of the skin, subcutaneous fat, and fascia. Early diagnosis of NF is challenging, and it can be very difficult to distinguish NF from other infectious diseases of skin and subcutaneous tissue. Imaging studies and laboratory investigations are crucial diagnostic means for NF. We diagnosed a case of NF with multiple organ dysfunction and septic shock, and this is the first case of NF associated with Hailey-Hailey disease (HHD) to our knowledge. Clinicians should be alert to signs and symptoms of NF in HHD and other skin diseases with damaged skin barrier function such as pemphigus, pemphigoid, and all kinds of ulcers, especially in diabetic and immunosuppressed patients. Key Words: Necrotizing fasciitis, Genodermatosis, Hailey-Hailey disease.


Fasciitis, Necrotizing , Pemphigus, Benign Familial , Humans , Fasciitis, Necrotizing/diagnosis , Fasciitis, Necrotizing/therapy , Pemphigus, Benign Familial/complications , Pemphigus, Benign Familial/diagnosis , Skin , Fascia , Subcutaneous Tissue
14.
Mol Cancer ; 20(1): 100, 2021 08 05.
Article En | MEDLINE | ID: mdl-34353330

BACKGROUND: 3-phosphoinositide-dependent protein kinase-1 (PDK1) acts as a master kinase of protein kinase A, G, and C family (AGC) kinase to predominantly govern cell survival, proliferation, and metabolic homeostasis. Although the regulations to PDK1 downstream substrates such as protein kinase B (AKT) and ribosomal protein S6 kinase beta (S6K) have been well established, the upstream regulators of PDK1, especially its degrader, has not been defined yet. METHOD: A clustered regularly interspaced short palindromic repeats (CRISPR)-based E3 ligase screening approach was employed to identify the E3 ubiquitin ligase for degrading PDK1. Western blotting, immunoprecipitation assays and immunofluorescence (IF) staining were performed to detect the interaction or location of PDK1 with speckle-type POZ protein (SPOP). Immunohistochemistry (IHC) staining was used to study the expression of PDK1 and SPOP in prostate cancer tissues. In vivo and in vitro ubiquitination assays were performed to measure the ubiquitination conjugation of PDK1 by SPOP. In vitro kinase assays and mass spectrometry approach were carried out to identify casein kinase 1 (CK1) and glycogen synthase kinase 3 (GSK3)-mediated PDK1 phosphorylation. The biological effects of PDK1 mutations and correlation with SPOP mutations were performed with colony formation, soft agar assays and in vivo xenograft mouse models. RESULTS: We identified that PDK1 underwent SPOP-mediated ubiquitination and subsequent proteasome-dependent degradation. Specifically, SPOP directly bound PDK1 by the consensus degron in a CK1/GSK3ß-mediated phosphorylation dependent manner. Pathologically, prostate cancer patients associated mutations of SPOP impaired PDK1 degradation and thus activated the AKT kinase, resulting in tumor malignancies. Meanwhile, mutations that occurred around or within the PDK1 degron, by either blocking SPOP to bind the degron or inhibiting CK1 or GSK3ß-mediated PDK1 phosphorylation, could markedly evade SPOP-mediated PDK1 degradation, and played potently oncogenic roles via activating the AKT kinase. CONCLUSIONS: Our results not only reveal a physiological regulation of PDK1 by E3 ligase SPOP, but also highlight the oncogenic roles of loss-of-function mutations of SPOP or gain-of-function mutations of PDK1 in tumorigenesis through activating the AKT kinase.


3-Phosphoinositide-Dependent Protein Kinases/metabolism , Cell Transformation, Neoplastic/metabolism , Nuclear Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Repressor Proteins/metabolism , Animals , CRISPR-Cas Systems , Cell Line , Disease Models, Animal , Glycogen Synthase Kinase 3/metabolism , Heterografts , Humans , Mice , Models, Biological , Mutation , Nuclear Proteins/genetics , Phosphorylation , Protein Binding , Proteolysis , Repressor Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
15.
Adv Sci (Weinh) ; 8(18): e2004303, 2021 09.
Article En | MEDLINE | ID: mdl-34278744

Copper plays pivotal roles in metabolic homoeostasis, but its potential role in human tumorigenesis is not well defined. Here, it is revealed that copper activates the phosphoinositide 3-kinase (PI3K)-protein kinase B (PKB, also termed AKT) oncogenic signaling pathway to facilitate tumorigenesis. Mechanistically, copper binds 3-phosphoinositide dependent protein kinase 1 (PDK1), in turn promotes PDK1 binding and subsequently activates its downstream substrate AKT to facilitate tumorigenesis. Blocking the copper transporter 1 (CTR1)-copper axis by either depleting CTR1 or through the use of copper chelators diminishes the AKT signaling and reduces tumorigenesis. In support of an oncogenic role for CTR1, the authors find that CTR1 is abnormally elevated in breast cancer, and is subjected by NEDD4 like E3 ubiquitin protein ligase (Nedd4l)-mediated negative regulation through ubiquitination and subsequent degradation. Accordingly, Nedd4l displays a tumor suppressive function by suppressing the CTR1-AKT signaling. Thus, the findings identify a novel regulatory crosstalk between the Nedd4l-CTR1-copper axis and the PDK1-AKT oncogenic signaling, and highlight the therapeutic relevance of targeting the CTR1-copper node for the treatment of hyperactive AKT-driven cancers.


3-Phosphoinositide-Dependent Protein Kinases/metabolism , Breast Neoplasms/metabolism , Carcinogenesis/metabolism , Copper Transporter 1/metabolism , Copper/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Breast Neoplasms/genetics , Carcinogenesis/genetics , Copper Transporter 1/genetics , Female , Humans , Mice , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/genetics
17.
Histochem Cell Biol ; 154(3): 287-299, 2020 Sep.
Article En | MEDLINE | ID: mdl-32495040

In mammals, progressive activation of primordial follicles is essential for maintenance of the reproductive lifespan. Several reports have demonstrated that mitogen-activated protein kinases 3 and 1 (MAPK3/1)-mammalian target of rapamycin complex 1 (mTORC1) signaling in pre-granulosa cells promotes primordial follicle activation by increasing KIT ligand (KITL) expression and then stimulating phosphatidylinositol 3 kinase signaling in oocytes. However, the mechanism of mTORC1 signaling in the promotion of KITL expression is unclear. Immunofluorescence staining results showed that phosphorylated cyclic AMP response element-binding protein (CREB) was mainly expressed in pre-granulosa cells. The CREB inhibitor KG-501 and CREB knockdown by Creb siRNA significantly suppressed primordial follicle activation, reduced pre-granulosa cell proliferation and dramatically increased oocyte apoptosis. Western blotting results demonstrated that both the MAPK3/1 inhibitor U0126 and mTORC1 inhibitor rapamycin significantly decreased the levels of phosphorylated CREB, indicating that MAPK3/1-mTORC1 signaling is required for CREB activation. Furthermore, CREB could bind to the Kitl promoter region, and KG-501 significantly decreased the expression levels of KITL. In addition, KG-501 and CREB knockdown significantly decreased the levels of phosphorylated Akt, leading to a reduced number of oocytes with Foxo3a nuclear export. KG-501 also inhibited bpV (HOpic)-stimulated primordial follicle activation. Taken together, the results show that CREB is required for MAPK3/1-mTORC1 signaling-promoted KITL expression followed by the activation of primordial follicles.


Cyclic AMP Response Element-Binding Protein/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Ovarian Follicle/metabolism , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Female , Male , Mechanistic Target of Rapamycin Complex 1/genetics , Mice , Mice, Inbred ICR , Naphthols/pharmacology , Organophosphates/pharmacology , Ovarian Follicle/drug effects , Phosphorylation , Signal Transduction/genetics , Stem Cell Factor/antagonists & inhibitors , Stem Cell Factor/metabolism , Tissue Culture Techniques , Vanadium Compounds/antagonists & inhibitors , Vanadium Compounds/pharmacology
18.
Am J Cancer Res ; 10(1): 299-313, 2020.
Article En | MEDLINE | ID: mdl-32064169

EZH2, a histone methylase, plays a critical role in the tumor progression via regulation of progenitor genes. However, the detailed molecular mechanism of EZH2 in cancer malignant progression remains unknown. Therefore, we aimed to investigate how EZH2 is regulated in human cancer. We used numerous approaches, including Co-immunoprecipitation (Co-IP), Transfection, RT-PCR, Western blotting, Transwell assays, and animal studies, to determine the deubiquitination mechanism of EZH2 in cancer cells. We demonstrated that USP7 regulated EZH2 in human cancer cells and in vivo in mouse models. Overexpression of USP7 promoted the expression of EZH2 protein, but overexpression of a USP7 mutant did not change the EZH2 level. Consistently, knockdown of USP7 resulted in a striking decrease in EZH2 protein levels in human cancer cells. Functionally, USP7 overexpression promoted cell growth and invasion via deubiquitination of EZH2. Consistently, downregulation of USP7 inhibited cell migration and invasion in cancer. More importantly, knockdown of USP7 inhibited tumor growth, while USP7 overexpression exhibited opposed effect in mice. Our results indicate that USP7 regulates EZH2 via its deubiquitination and stabilization. The USP7/EZH2 axis could present a new promising therapeutic target for cancer patients.

20.
J Dermatol ; 46(11): 993-997, 2019 Nov.
Article En | MEDLINE | ID: mdl-31486149

Post-herpetic neuralgia (PHN) is a well-established clinical problem with potential severe personal and socioeconomic implications. GTP cyclohydrolase 1 (GCH1) gene, which encodes the rate-limiting enzyme in tetrahydrobiopterin synthesis, has been strongly implicated to be associated with neuropathic pain in previous animal and human studies. The rs3783641 (T > A) single-nucleotide polymorphism (SNP) in the GCH1 gene is functional. Here we examine the association between rs3783641 and PHN. A total of 292 subjects including 103 PHN patients, 87 herpes zoster (HZ) patients and 102 healthy controls were enrolled in this study. The rs3783641 polymorphisms were detected via the high-resolution melting curve (HRM) method. There were statistical differences between PHN group and the other two groups in genotype distribution (P = 0.029 and 0.017, respectively) and allele frequency (P = 0.032 and 0.005, respectively) of rs3783641. The proportion of subjects with AA genotype in the PHN group was significantly lower compared to HZ group and control group (P = 0.026 and 0.016, respectively). The frequency of A allele was lower in the PHN group than in control group (P = 0.005), and the frequency of T allele in the PHN group was higher than in HZ group and control group (P = 0.001 and 0.003, respectively). The results of this study suggest that the rs3783641 SNP in the GCH1 gene is associated with PHN, and the AA genotype showed a protective effect in PHN.


GTP Cyclohydrolase/genetics , Neuralgia, Postherpetic/genetics , Aged , Aged, 80 and over , China , Female , Genotype , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide
...