Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
2.
Genes Dis ; 11(1): 479-494, 2024 Jan.
Article En | MEDLINE | ID: mdl-37588207

Glioblastoma (GBM) is a malignant brain tumor that grows quickly, spreads widely, and is resistant to treatment. Fibroblast growth factor receptor (FGFR)1 is a receptor tyrosine kinase that regulates cellular processes, including proliferation, survival, migration, and differentiation. FGFR1 was predominantly expressed in GBM tissues, and FGFR1 expression was negatively correlated with overall survival. We rationally designed a novel small molecule CYY292, which exhibited a strong affinity for the FGFR1 protein in GBM cell lines in vitro. CYY292 also exerted an effect on the conserved Ser777 residue of FGFR1. CYY292 dose-dependently inhibited cell proliferation, epithelial-mesenchymal transition, stemness, invasion, and migration in vitro by specifically targeting the FGFR1/AKT/Snail pathways in GBM cells, and this effect was prevented by pharmacological inhibitors and critical gene knockdown. In vivo experiments revealed that CYY292 inhibited U87MG tumor growth more effectively than AZD4547. CYY292 also efficiently reduced GBM cell proliferation and increased survival in orthotopic GBM models. This study further elucidates the function of FGFR1 in the GBM and reveals the effect of CYY292, which targets FGFR1, on downstream signaling pathways directly reducing GBM cell growth, invasion, and metastasis and thus impairing the recruitment, activation, and function of immune cells.

3.
Eur J Pharmacol ; 956: 175935, 2023 Oct 05.
Article En | MEDLINE | ID: mdl-37541366

The highly conserved RNA-binding protein LIN28B and focal adhesion kinase (FAK) are significantly upregulated in ovarian cancer (OC), serving as markers for disease progression and prognosis. Nonetheless, the correlation between LIN28B and FAK, as well as the pharmacological effects of the LIN28 inhibitor C1632, in OC cells have not been elucidated. The present study demonstrates that C1632 significantly reduced the rate of DNA replication, arrested the cell cycle at the G0/G1 phase, consequently reducing cell viability, and impeding clone formation. Moreover, treatment with C1632 decreased cell-matrix adhesion, as well as inhibited cell migration and invasion. Further mechanistic studies revealed that C1632 inhibited the OC cell proliferation and migration by concurrently inhibiting LIN28 B/let-7/FAK signaling pathway and FAK phosphorylation. Furthermore, C1632 exhibited an obvious inhibitory effect on OC cell xenograft tumors in mice. Altogether, these findings identified that LIN28 B/let-7/FAK is a valuable target in OC and C1632 is a promising onco-therapeutic agent for OC treatment.


Ovarian Neoplasms , Signal Transduction , Female , Humans , Animals , Mice , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Phosphorylation , Focal Adhesion Kinase 1/genetics , Ovarian Neoplasms/metabolism , Cell Proliferation , Cell Movement , Cell Line, Tumor
4.
Brain Inform ; 10(1): 8, 2023 Mar 03.
Article En | MEDLINE | ID: mdl-36867298

Helmet mounted display systems (HMDs) are high-performance display devices for modern aircraft. We propose a novel method combining event-related potentials (ERPs) and BubbleView to measure cognitive load under different HMD interfaces. The distribution of the subjects' attention resources is reflected by analyzing the BubbleView, and the input of the subjects' attention resources on the interface is reflected by analyzing the ERP's P3b and P2 components. The results showed that the HMD interface with more symmetry and a simple layout had less cognitive load, and subjects paid more attention to the upper portion of the interface. Combining the experimental data of ERP and BubbleView, we can obtain a more comprehensive, objective, and reliable HMD interface evaluation result. This approach has significant implications for the design of digital interfaces and can be utilized for the iterative evaluation of HMD interfaces.

5.
Front Chem ; 10: 1013994, 2022.
Article En | MEDLINE | ID: mdl-36267657

Fighting against tumors is an ongoing challenge in both medicinal and clinical applications. In recent years, chemotherapy, along with surgery, has significantly improved the situation to prolong life expectancy. Theoretically, and regardless of dosage, we now have drugs that are strong enough to eliminate most tumors. However, due to uncontrollable drug distribution in the body, it is difficult to increase treatment efficiency by simply increasing dosages. For this reason, the need for a drug delivery system that can release "bombs" at the target organ or tissue as precisely as possible has elicited the interest of researchers. In our work, we design and construct a silica-based nanocomposite to meet the above demand. The novel nanocomposite drug carrier can be guided to target tumors or tissue by a magnetic field, since it is constructed with superparamagnetic Fe3O4 as the core. The Fe3O4 core is clad in a mesoporous silica molecular sieve MCM-41 (represented as MS, in this article), since this MS has enormous ordered hexagonal caves providing sufficient space to hold the drug molecules. To modify the magnetically guided carriers so that they become both magnetically guided and light-responsive, benzophenone hydrazone is coupled into the molecular sieve tunnel. When a certain wavelength of light is imposed on the gating molecules, C=N double bonds vibrate and swing, causing the cavity that holds the drug molecules to change size and open the tunnels. Hence, the nanocomposite has the ability to release loaded drugs with light irradiation. The structure, loading abilities, and the size of the nanocomposite are inspected with a scanning electron microscope, a transmission electron microscope, thermogravimetry analysis, N2 adsorption/desorption, and dynamic light scattering The biocompatibility and in vitro drug molecule controlled release are tested with an SMMC-7721 cell line.

6.
Chem Biol Interact ; 367: 110200, 2022 Nov 01.
Article En | MEDLINE | ID: mdl-36170914

Osteosarcoma (OS) is a group of malignant tumors with high rates of malignancy and metastasis. OS most commonly affects adolescents and young individuals. However, owing to the lack of effective targeted treatments, the 5-year survival rate for OS is still around 20%. Thus, it is essential to develop effective drugs with low toxicity for OS treatment. In the present study, we investigated the antitumor effect and underlying mechanism of cyy260 in OS via suppressing PDGFR-ß and its downstream pathway. We demonstrated that cyy260 inhibits OS cell proliferation and promotes apoptosis via inducing DNA damage and causing cell cycle arrest. More importantly, cyy260 also significantly inhibits tumor migration. Further analysis of molecular mechanisms confirmed that PDGFR-ß and its downstream AKT, STAT3, and ERK were involved in the cyy260-mediated antitumor effect. Analysis of subcutaneously transplanted tumors in mice showed that cyy260 suppressed tumor cell growth and exhibited low toxicity in vivo. Collectively, these findings proved that cyy260 could serve as a promising PDGFR-ß inhibitor for the treatment of OS.


Bone Neoplasms , Osteosarcoma , Animals , Apoptosis , Bone Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Mice , Osteosarcoma/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
7.
Int J Biol Macromol ; 213: 858-870, 2022 Jul 31.
Article En | MEDLINE | ID: mdl-35697164

G-quadruplex regulates a wide spectrum of biological processes, including telomere maintenance, DNA replication and transcription. The development of small molecules to selectively target G-quadruplex and their application remain hotspots in cancer therapy. Here, we explored the biological effect of G-quadruplexes stabilizer Tetra-Pt(bpy) in telomerase-positive cancer cells. Telomere maintenance was evaluated by telomerase repeat amplification protocol, chromosome orientation fluorescence in situ hybridization and telomere restriction fragment assays. We found that Tetra-Pt(bpy) accelerates telomere shortening through dual inhibition of telomerase activity and telomere sister chromatin exchanges mediated by telomeric G-quadruplexes. Consequently, Tetra-Pt(bpy)-treated cancer cells became enriched with extremely short telomeres and produced a strong telomeric DNA damage response following long-term treatment, leading to cell proliferation inhibition and senescence. Experimental evidence from RNA seq and cell migration-related assays showed that Tetra-Pt(bpy) decreased cell-matrix adhesion and inhibited the migration of non-senescent tumor cells. Mechanistically, Tetra-Pt(bpy) induced the formation of G-quadruplexes in focal adhesion kinase (FAK)-encoding gene PTK2, resulting in FAK transcription inhibition. Tetra-Pt(bpy) reduced xenograft tumor formation and inhibited tumor cell growth and migration in mice. This study further elucidates the function of G-quadruplexes in the human genome and reveals the potential of Tetra-Pt(bpy) as a novel chemotherapeutic agent for targeting telomerase-positive cancer cells.


Antineoplastic Agents , G-Quadruplexes , Neoplasms , Telomerase , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Humans , In Situ Hybridization, Fluorescence , Mice , Neoplasms/drug therapy , Telomerase/genetics , Telomerase/metabolism , Telomere/genetics , Telomere/metabolism
...