Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(3): 4755-4763, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36629917

RESUMEN

Efficient separation of water-in-oil emulsion is of great importance but remains highly challenging since such emulsion contains stable tiny droplets with a diameter less than 20 µm. Herein, we reported the fabrication of a modular fibrous functional membrane using an "in situ growth and covalent functionalization" strategy. The as-prepared PAN@LDH@OTS (PAN = polyacrylonitrile; LDH = layered double hydroxides; and OTS = octadecyltrichlorosilane) membrane possessed an interlaced rough nanostructured surface with intriguing superhydrophobic/superlipophilic properties. When applied for the separation of surfactant-stabilized water-in-oil emulsion (SSE), the PAN@LDH@OTS membrane exhibited an ultrahigh permeation flux of up to 4.63 × 104 L m-2 h-1 with an outstanding separation efficiency of >99.92%, outperforming most of the state-of-the-art membranes. In addition, the membrane can maintain a stable permeation flux and superhydrophobic/superlipophilic properties after 20 times of use. Detailed characterization demonstrated that the demulsification of the SSE process was as follows: first, the droplets can be easily adsorbed to the PAN@LDH@OTS membrane due to the improved intermolecular interactions between OTS and the surfactants (Span 80); second, the droplets can be deformed by the electropositive LDH laminate; and third, the deformed tiny emulsion droplets coalesced into large droplets and floated up, and as a result, efficient separation of SSE can be achieved.

2.
Artículo en Inglés | MEDLINE | ID: mdl-35653141

RESUMEN

Thermal insulation materials show a substantial impact on civil and military fields for applications. Fabrication of efficient, flexible, and comfortable composite materials for thermal insulation is thereby of significance. Herein, a "fiber templated epitaxial growth" strategy was adopted to construct PAN@LDH (PAN = polyacrylonitrile; LDH = layered double hydroxides) composite membranes with a three-dimensional (3D) network structure. The PAN@LDH showed an impressive temperature difference of 28.1 °C as a thermal insulation material in the hot stage of 80 °C with a thin layer of 0.6 mm. Moreover, when a human hand was covered with 3 layers of the PAN@LDH-70% composite membrane, it was rendered invisible under infrared radiation. Such excellent performance can be attributed to the following reasons: (1) the hierarchical interfaces of the PAN@LDH composite membrane reduced thermal conduction, (2) the 3D network structure of the PAN@LDH composite membranes restricted thermal convection, and (3) the selective infrared absorption of LDHs decreased thermal radiation. When modified with Dodecyltrimethoxysilane (DTMS), the resulting PAN@LDH@DTMS membrane can be used under high humidity conditions with excellent thermal insulation properties. As such, this work provides a facile strategy for the development of high-performance thermal insulation functional membranes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA