Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Opt Express ; 32(10): 17525-17534, 2024 May 06.
Article En | MEDLINE | ID: mdl-38858934

The anisotropic optical properties of aluminum scandium nitride (Al1-xScxN) thin films for both ordinary and extraordinary light are investigated. A quantitative analysis of the band structures of the wurtzite Al1-xScxN is carried out. In addition, Al1-xScxN photonic waveguides and bends are fabricated on 8-inch Si substrates. With x = 0.087 and 0.181, the light propagation losses are 5.98 ± 0.11 dB/cm and 8.23 ± 0.39 dB/cm, and the 90° bending losses are 0.05 dB/turn and 0.08 dB/turn at 1550 nm wavelength, respectively.

2.
Opt Lett ; 49(11): 3162-3165, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824353

Lithium niobate (LN) photonics has gained significant interest for their distinct material properties. However, achieving monolithically integrated photodetectors on lithium niobate on an insulator (LNOI) platform for communication wavelengths remains a challenge due to the large bandgap and extremely low electrical conductivity of LN material. A two-dimensional (2D) material photodetector is an ideal solution for LNOI photonics with a strong light-matter interaction and simple integration technique. In this work, a van der Waals heterostructure photodiode composed of a p-type black phosphorus layer and an n-type MoS2 layer is successfully demonstrated for photodetection at communication wavelengths on a LNOI platform. The LNOI waveguide-integrated BP-MoS2 photodetector exhibits a dark current as low as 0.21 nA and an on/off ratio exceeding 200 under zero voltage bias with an incident power of 13.93 µW. A responsivity as high as 1.46 A/W is achieved at -1 V bias with a reasonable dark current around 2.33 µA. With the advantages of high responsivity, low dark current, and simple fabrication process, it is promising for the monolithically integrated photodetector application for LNOI photonic platforms at communication wavelengths.

3.
Appl Opt ; 63(12): 3242-3249, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38856473

Traditional long-wave infrared polarimetry usually relies on complex optical setups, making it challenging to meet the increasing demand for system miniaturization. To address this problem, we design an all-silicon broadband achromatic polarization-multiplexing metalens (BAPM) operating at the wavelength range of 9-12 µm. A machine-learning-based design method is developed to replace the tedious and computationally intensive simulation of a large number of meta-atoms. The results indicate that the coefficients of variation in focal length of the BAPM are 3.95% and 3.71%, and the average focusing efficiencies are 41.3% and 40.5% under broadband light incidence with x- and y-polarizations, respectively.

4.
Materials (Basel) ; 17(10)2024 May 11.
Article En | MEDLINE | ID: mdl-38793343

Metasurface holograms, with the capability to manipulate spatial light amplitudes and phases, are considered next-generation solutions for holographic imaging. However, conventional fabrication approaches for meta-atoms are heavily dependent on electron-beam lithography (EBL), a technique known for its expensive and time-consuming nature. In this paper, a polarization-insensitive metasurface hologram is proposed using a cost-effective and rapid nanoimprinting method with titanium dioxide (TiO2) nanoparticle loaded polymer (NLP). Based on a simulation, it has been found that, despite a reduction in the aspect ratio of meta-atoms of nearly 20%, which is beneficial to silicon master etching, NLP filling, and the mold release processes, imaging efficiency can go up to 54% at wavelength of 532 nm. In addition, it demonstrates acceptable imaging quality at wavelengths of 473 and 671 nm. Moreover, the influence of fabrication errors and nanoimprinting material degradation in terms of residual layer thickness, meta-atom loss or fracture, thermal-induced dimensional variation, non-uniform distribution of TiO2 particles, etc., on the performance is investigated. The simulation results indicate that the proposed device exhibits a high tolerance to these defects, proving its applicability and robustness in practice.

5.
Appl Opt ; 63(6): 1522-1528, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38437364

A non-uniform distributed silicon optical phased array (OPA) is proposed and numerically demonstrated to realize high directionality and a wide range for beam steering. The OPA is composed of grating antennas with dual-layer corrugations along silicon strip waveguides, which can achieve a high directionality of 0.96 and a small divergence angle of 0.084°. To reduce the crosstalk between adjacent antennas and realize a wide steering range, the genetic algorithm is improved and utilized to arrange the locations of grating antennas. As a proof of concept, a 32-channel non-uniform distributed OPA is designed and thoroughly optimized. The simulation results successfully demonstrate a two-dimensional wide steering range of 70∘×18.7∘ with a side-mode suppression ratio (SMSR) over 10 dB.

6.
Opt Express ; 32(3): 3501-3511, 2024 Jan 29.
Article En | MEDLINE | ID: mdl-38297570

An amorphous germanium-tin (a-Ge0.83Sn0.17) waveguide bolometer featuring a one-dimension (1D) metasurface absorber is proposed for mid-infrared photodetection at room-temperature. The device is based on the germanium-on-silicon (GOS) photonic platform. The impacts of the 1D metasurface on the performances of the waveguide bolometer are investigated. The responsivity of the a-Ge0.83Sn0.17 waveguide bolometer could be significantly enhanced by the metasurface. A responsivity of around -3.17%/µW within the 4.1 ∼ 4.3 µm wavelength range is achieved. In addition, a 3-dB roll-off frequency higher than 10 kHz is obtained.

7.
Opt Lett ; 48(2): 335-338, 2023 Jan 15.
Article En | MEDLINE | ID: mdl-36638451

Tunable slow and fast light generation in a silicon-on-insulator (SOI) Fano resonator is proposed and experimentally demonstrated. The slow and fast light generation with symmetric and asymmetric coupling conditions of the Fano resonator is theoretically analyzed. Under a slightly imbalanced coupling condition, the two output ports of the Fano resonator could produce a fast light and a slow light, respectively. By utilizing the thermo-optic (TO) effect to change the phase difference of the two optical beams coupled into the resonator, the transition of fast and slow light can be realized at the fixed resonance wavelength. Experimental results show that a slow-to-fast transition (group delay from 0.852 to -1.057 ns) at one resonance wavelength, and a fast-to-slow transition (group delay from -0.22 to 0.867 ns) at another resonance wavelength are realized simultaneously by controlling the microheater to tune the phase difference.

8.
Opt Express ; 30(14): 24852-24861, 2022 Jul 04.
Article En | MEDLINE | ID: mdl-36237029

We experimentally demonstrate a polarization-insensitive optical filter (PIOF) using polarization rotator-splitters (PRSs) and microring resonators (MRRs) on the silicon-on-insulator (SOI) platform with complementary metal-oxide-semiconductor (CMOS) compatible fabrication process. The PRS consists of a tapered-rib waveguide and an asymmetrical directional coupler (ADC), which realize the polarization rotation and splitting, to ensure the connected MRRs-based optical filter operating at one desired polarization when light with different polarizations are launched into the device. The measured results show that the optical transmission spectra of the device are identical for TE and TM polarization input. The box-like filtering spectra are also achieved with a 3-dB bandwidth of ∼0.15 nm and a high extinction ratio (ER) over 30 dB.

9.
Opt Express ; 29(12): 19084-19093, 2021 Jun 07.
Article En | MEDLINE | ID: mdl-34154150

Infrared gas sensors hold great promise in the internet of things and artificial intelligence. Making infrared light sources with miniaturized size, reliable and tunable emission is essential but remains challenging. Herein, we present the tailorability of radiant power and the emergence of new emission wavelength of microelectromechanical system (MEMS)-based thermal emitters with nickel oxide (NiO) films. The coating of NiO on emitters increases top surface emissivity and induces the appearance of new wavelengths between 15 and 19 µm, all of which have been justified by spectroscopic methods. Furthermore, a sensor array is assembled for simultaneous monitoring of concentrations of carbon dioxide (CO2), methane (CH4), humidity, and temperature. The platform shows selective and sensitive detection at room temperature toward CO2 and CH4 with detection limits of around 50 and 1750 ppm, respectively, and also shows fast response/recovery and good recyclability. The demonstrated emission tailorability of MEMS emitters and their usage in sensor array provide novel insights for designing and fabricating optical sensors with good performance, which is promising for mass production and commercialization.

...