Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Cell Biol ; 15(2)2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-36822623

RESUMEN

Helicase-like transcription factor (HLTF) has been found to be involved in the maintenance of genome stability and tumour suppression, but whether its downregulation in cancers is associated with posttranslational regulation remains unclear. Here, we observed that HLTF was significantly downregulated in hepatocellular carcinoma (HCC) tissues and positively associated with the survival of HCC patients. Mechanistically, the decreased expression of HLTF in HCC was attributed to elevated ß-TrCP-mediated ubiquitination and degradation. Knockdown of HLTF enhanced p62 transcriptional activity and mammalian target of rapamycin (mTOR) activation, leading to HCC tumourigenesis. Inhibition of mTOR effectively blocked ß-TrCP overexpression- or HLTF knockdown-mediated HCC tumourigenesis and metastasis. Furthermore, in clinical tissues, decreased HLTF expression was positively correlated with elevated expression of ß-TrCP, p62, or p-mTOR in HCC patients. Overall, our data not only uncover new roles of HLTF in HCC cell proliferation and metastasis, but also reveal a novel posttranslational modification of HLTF by ß-TrCP, indicating that the ß-TrCP/HLTF/p62/mTOR axis may be a new oncogenic driver involved in HCC development. This finding provides a potential therapeutic strategy for HCC patients by targeting the ß-TrCP/HLTF/p62/mTOR axis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Proteínas con Repetición de beta-Transducina/genética , Proteínas con Repetición de beta-Transducina/metabolismo , Línea Celular Tumoral , Neoplasias Hepáticas/patología , Sirolimus , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Carcinogénesis/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de Unión al ADN/metabolismo
2.
Mol Med ; 28(1): 11, 2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-35093024

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the most common type of neurodegenerative disease in the contemporary era, and it is still clinically incurable. Eriodictyol, a natural flavonoid compound that is mainly present in citrus fruits and some Chinese herbal medicines, has been reported to exert anti-inflammatory, antioxidant, anticancer and neuroprotective effects. However, few studies have examined the anti-AD effect and molecular mechanism of eriodictyol. METHODS: APP/PS1 mice were treated with eriodictyol and the cognitive function of mice was assessed using behavioral tests. The level of amyloid-ß (Aß) aggregation and hyperphosphorylation of Tau in the mouse brain were detected by preforming a histological analysis and Western blotting. HT-22 cells induced by amyloid-ß peptide (1-42) (Aß1-42) oligomers were treated with eriodictyol, after which cell viability was determined and the production of p-Tau was tested using Western blotting. Then, the characteristics of ferroptosis, including iron aggregation, lipid peroxidation and the expression of glutathione peroxidase type 4 (GPX4), were determined both in vivo and in vitro using Fe straining, Western blotting and qPCR assays. Additionally, the expression level of vitamin D receptor (VDR) and the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) signaling pathway were tested using Western blotting and qPCR assays. Afterward, HT-22 cells with VDR knockout were used to explore the potential mechanisms, and the relationship between VDR and Nrf2 was further assessed by performing a coimmunoprecipitation assay and bioinformatics analysis. RESULTS: Eriodictyol obviously ameliorated cognitive deficits in APP/PS1 mice, and suppressed Aß aggregation and Tau phosphorylation in the brains of APP/PS1 mice. Moreover, eriodictyol inhibited Tau hyperphosphorylation and neurotoxicity in HT-22 cells induced by Aß1-42 oligomer. Furthermore, eriodictyol exerted an antiferroptosis effect both in vivo and in vitro, and its mechanism may be associated with the activation of the Nrf2/HO-1 signaling pathway. Additionally, further experiments explained that the activation of Nrf2/HO-1 signaling pathway by eriodictyol treatment mediated by VDR. CONCLUSIONS: Eriodictyol alleviated memory impairment and AD-like pathological changes by activating the Nrf2/HO-1 signaling pathway through a mechanism mediated by VDR, which provides a new possibility for the treatment of AD.


Asunto(s)
Ferroptosis/efectos de los fármacos , Flavanonas/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Receptores de Calcitriol/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Biomarcadores , Cognición/efectos de los fármacos , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Flavanonas/química , Inmunohistoquímica , Ratones , Ratones Transgénicos , Fosforilación , Agregación Patológica de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA