Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Annu Rev Genet ; 56: 339-368, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36070560

RESUMEN

Spermatogenesis is a complex differentiation process coordinated spatiotemporally across and along seminiferous tubules. Cellular heterogeneity has made it challenging to obtain stage-specific molecular profiles of germ and somatic cells using bulk transcriptomic analyses. This has limited our ability to understand regulation of spermatogenesis and to integrate knowledge from model organisms to humans. The recent advancement of single-cell RNA-sequencing (scRNA-seq) technologies provides insights into the cell type diversity and molecular signatures in the testis. Fine-grained cell atlases of the testis contain both known and novel cell types and define the functional states along the germ cell developmental trajectory in many species. These atlases provide a reference system for integrated interspecies comparisons to discover mechanistic parallels and to enable future studies. Despite recent advances, we currently lack high-resolution data to probe germ cell-somatic cell interactions in the tissue environment, but the use of highly multiplexed spatial analysis technologies has begun to resolve this problem. Taken together, recent single-cell studies provide an improvedunderstanding of gametogenesis to examine underlying causes of infertility and enable the development of new therapeutic interventions.


Asunto(s)
Espermatogénesis , Transcriptoma , Humanos , Masculino , Transcriptoma/genética , Espermatogénesis/genética , Testículo/metabolismo , Perfilación de la Expresión Génica , Diferenciación Celular/genética
2.
Nat Commun ; 12(1): 3876, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162856

RESUMEN

Testicular development and function rely on interactions between somatic cells and the germline, but similar to other organs, regenerative capacity declines in aging and disease. Whether the adult testis maintains a reserve progenitor population remains uncertain. Here, we characterize a recently identified mouse testis interstitial population expressing the transcription factor Tcf21. We found that TCF21lin cells are bipotential somatic progenitors present in fetal testis and ovary, maintain adult testis homeostasis during aging, and act as potential reserve somatic progenitors following injury. In vitro, TCF21lin cells are multipotent mesenchymal progenitors which form multiple somatic lineages including Leydig and myoid cells. Additionally, TCF21+ cells resemble resident fibroblast populations reported in other organs having roles in tissue homeostasis, fibrosis, and regeneration. Our findings reveal that the testis, like other organs, maintains multipotent mesenchymal progenitors that can be potentially leveraged in development of future therapies for hypoandrogenism and/or infertility.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Homeostasis/genética , Células Madre Mesenquimatosas/metabolismo , Regeneración/genética , Testículo/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Linaje de la Célula/genética , Células Cultivadas , Femenino , Perfilación de la Expresión Génica/métodos , Células Intersticiales del Testículo/citología , Células Intersticiales del Testículo/metabolismo , Masculino , Células Madre Mesenquimatosas/citología , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis de la Célula Individual/métodos , Testículo/citología
3.
Genomics Proteomics Bioinformatics ; 18(2): 140-149, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32911083

RESUMEN

Mosaic variants resulting from postzygotic mutations are prevalent in the human genome and play important roles in human diseases. However, except for cancer-related variants, there is no collection of postzygotic mosaic variants in noncancer disease-related and healthy individuals. Here, we present MosaicBase, a comprehensive database that includes 6698 mosaic variants related to 266 noncancer diseases and 27,991 mosaic variants identified in 422 healthy individuals. Genomic and phenotypic information of each variant was manually extracted and curated from 383 publications. MosaicBase supports the query of variants with Online Mendelian Inheritance in Man (OMIM) entries, genomic coordinates, gene symbols, or Entrez IDs. We also provide an integrated genome browser for users to easily access mosaic variants and their related annotations for any genomic region. By analyzing the variants collected in MosaicBase, we find that mosaic variants that directly contribute to disease phenotype show features distinct from those of variants in individuals with mild or no phenotypes, in terms of their genomic distribution, mutation signatures, and fraction of mutant cells. MosaicBase will not only assist clinicians in genetic counseling and diagnosis but also provide a useful resource to understand the genomic baseline of postzygotic mutations in the general human population. MosaicBase is publicly available at http://mosaicbase.com/ or http://49.4.21.8:8000.


Asunto(s)
Enfermedad/genética , Salud , Bases del Conocimiento , Mosaicismo , Mutación/genética , Cigoto/metabolismo , Bases de Datos Genéticas , Genoma Humano , Humanos , Fenotipo , Programas Informáticos , Interfaz Usuario-Computador
4.
Dev Cell ; 54(4): 529-547.e12, 2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32504559

RESUMEN

Spermatogenesis is a highly regulated process that produces sperm to transmit genetic information to the next generation. Although extensively studied in mice, our current understanding of primate spermatogenesis is limited to populations defined by state-specific markers from rodent data. As between-species differences have been reported in the duration and differentiation hierarchy of this process, it remains unclear how molecular markers and cell states are conserved or have diverged from mice to man. To address this challenge, we employ single-cell RNA sequencing to identify transcriptional signatures of major germ and somatic cell types of the testes in human, macaque, and mice. This approach reveals similarities and differences in expression throughout spermatogenesis, including the stem/progenitor pool of spermatogonia, markers of differentiation, potential regulators of meiosis, RNA turnover during spermatid differentiation, and germ cell-soma communication. These datasets provide a rich foundation for future targeted mechanistic studies of primate germ cell development and in vitro gametogenesis.


Asunto(s)
Diferenciación Celular/genética , Análisis de la Célula Individual , Espermatogénesis/genética , Testículo/crecimiento & desarrollo , Animales , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Macaca/genética , Macaca/crecimiento & desarrollo , Masculino , Meiosis/genética , Ratones , Análisis de Secuencia de ARN , Espermatogonias/citología , Testículo/metabolismo
5.
PLoS Genet ; 15(4): e1008043, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30973874

RESUMEN

Mounting evidence supports that LINE-1 (L1) retrotransposition can occur postzygotically in healthy and diseased human tissues, contributing to genomic mosaicism in the brain and other somatic tissues of an individual. However, the genomic distribution of somatic human-specific LINE-1 (L1Hs) insertions and their potential impact on carrier cells remain unclear. Here, using a PCR-based targeted bulk sequencing approach, we profiled 9,181 somatic insertions from 20 postmortem tissues from five Rett patients and their matched healthy controls. We identified and validated somatic L1Hs insertions in both cortical neurons and non-brain tissues. In Rett patients, somatic insertions were significantly depleted in exons-mainly contributed by long genes-than healthy controls, implying that cells carrying MECP2 mutations might be defenseless against a second exonic L1Hs insertion. We observed a significant increase of somatic L1Hs insertions in the brain compared with non-brain tissues from the same individual. Compared to germline insertions, somatic insertions were less sense-depleted to transcripts, indicating that they underwent weaker selective pressure on the orientation of insertion. Our observations demonstrate that somatic L1Hs insertions contribute to genomic diversity and MeCP2 dysfunction alters their genomic patterns in Rett patients.


Asunto(s)
Elementos de Nucleótido Esparcido Largo , Síndrome de Rett/genética , Adolescente , Adulto , Secuencia de Bases , Encéfalo/metabolismo , Estudios de Casos y Controles , Corteza Cerebral/metabolismo , Femenino , Mutación de Línea Germinal , Humanos , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Mosaicismo , Mutación , Neuronas/metabolismo , Síndrome de Rett/metabolismo , Homología de Secuencia de Ácido Nucleico , Distribución Tisular , Transcripción Genética , Adulto Joven
6.
Dev Cell ; 46(5): 651-667.e10, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30146481

RESUMEN

Spermatogenesis requires intricate interactions between the germline and somatic cells. Within a given cross section of a seminiferous tubule, multiple germ and somatic cell types co-occur. This cellular heterogeneity has made it difficult to profile distinct cell types at different stages of development. To address this challenge, we collected single-cell RNA sequencing data from ∼35,000 cells from the adult mouse testis and identified all known germ and somatic cells, as well as two unexpected somatic cell types. Our analysis revealed a continuous developmental trajectory of germ cells from spermatogonia to spermatids and identified candidate transcriptional regulators at several transition points during differentiation. Focused analyses delineated four subtypes of spermatogonia and nine subtypes of Sertoli cells; the latter linked to histologically defined developmental stages over the seminiferous epithelial cycle. Overall, this high-resolution cellular atlas represents a community resource and foundation of knowledge to study germ cell development and in vivo gametogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Células de Sertoli/citología , Análisis de la Célula Individual/métodos , Espermatogénesis , Testículo/citología , Animales , Diferenciación Celular , Células Cultivadas , Perfilación de la Expresión Génica , Masculino , Ratones , Células de Sertoli/metabolismo , Testículo/metabolismo
7.
PLoS Genet ; 14(5): e1007395, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29763432

RESUMEN

Postzygotic single-nucleotide mosaicisms (pSNMs) have been extensively studied in tumors and are known to play critical roles in tumorigenesis. However, the patterns and origin of pSNMs in normal organs of healthy humans remain largely unknown. Using whole-genome sequencing and ultra-deep amplicon re-sequencing, we identified and validated 164 pSNMs from 27 postmortem organ samples obtained from five healthy donors. The mutant allele fractions ranged from 1.0% to 29.7%. Inter- and intra-organ comparison revealed two distinctive types of pSNMs, with about half originating during early embryogenesis (embryonic pSNMs) and the remaining more likely to result from clonal expansion events that had occurred more recently (clonal expansion pSNMs). Compared to clonal expansion pSNMs, embryonic pSNMs had higher proportion of C>T mutations with elevated mutation rate at CpG sites. We observed differences in replication timing between these two types of pSNMs, with embryonic and clonal expansion pSNMs enriched in early- and late-replicating regions, respectively. An increased number of embryonic pSNMs were located in open chromatin states and topologically associating domains that transcribed embryonically. Our findings provide new insights into the origin and spatial distribution of postzygotic mosaicism during normal human development.


Asunto(s)
Genoma Humano/genética , Mosaicismo , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma/métodos , Cigoto/metabolismo , Adulto , Momento de Replicación del ADN , Desarrollo Embrionario/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Especificidad de Órganos/genética , Cambios Post Mortem , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA