Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 576
1.
Dermatology ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38735287

INTRODUCTION: According to the common disease/rare variant (CDRV) hypothesis, it is important to study the role of rare variants in complex diseases. The association of rare variants with psoriasis has been demonstrated, but the association between rare variants and specific clinical subtypes of psoriasis has not been investigated. METHODS: Gene-based and gene-level meta-analyses were performed on data extracted from our previous study data sets(2,483 patients with guttate psoriasis and 8,292 patients with non-guttate psoriasis) for genotyping. Then, haplotype analysis was performed for rare loss-of-function variants located in MED12L, and protein function prediction was performed for MED12L. Gene-based analysis at each stage had a moderate significance threshold (P < 0.05). A chi-square test was then conducted on the three potential genes, and the merged gene-based analysis was used to confirm the results. We also conducted association analysis and meta-analysis for functional variants located on the identified gene. RESULTS: Through these gene-level analyses, we determined that MED12L is a guttate psoriasis susceptibility gene (P=9.99x10-5), and the single-nucleotide polymorphism (SNP) with the strongest association was rs199780529 (P_combine=1x10-3, P_meta=2x10-3). CONCLUSIONS: In our study, a guttate psoriasis-specific subtype-associated susceptibility gene was confirmed in a Chinese Han population. These findings contribute to a better genetic understanding of different subtypes of psoriasis.

2.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200221, 2024 May.
Article En | MEDLINE | ID: mdl-38579189

BACKGROUND AND OBJECTIVES: Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is a rare autoimmune neurologic disorder, the genetic etiology of which remains poorly understood. Our study aims to investigate the genetic basis of this disease in the Chinese Han population. METHODS: We performed a genome-wide association study and fine-mapping study within the major histocompatibility complex (MHC) region of 413 Chinese patients with anti-NMDAR encephalitis recruited from 6 large tertiary hospitals and 7,127 healthy controls. RESULTS: Our genome-wide association analysis identified a strong association at the IFIH1 locus on chromosome 2q24.2 (rs3747517, p = 1.06 × 10-8, OR = 1.55, 95% CI, 1.34-1.80), outside of the human leukocyte antigen (HLA) region. Furthermore, through a fine-mapping study of the MHC region, we discovered associations for 3 specific HLA class I and II alleles. Notably, HLA-DQB1*05:02 (p = 1.43 × 10-12; OR, 2.10; 95% CI 1.70-2.59) demonstrates the strongest association among classical HLA alleles, closely followed by HLA-A*11:01 (p = 4.36 × 10-7; OR, 1.52; 95% CI 1.29-1.79) and HLA-A*02:07 (p = 1.28 × 10-8; OR, 1.87; 95% CI 1.50-2.31). In addition, we uncovered 2 main HLA amino acid variation associated with anti-NMDAR encephalitis including HLA-DQß1-126H (p = 1.43 × 10-12; OR, 2.10; 95% CI 1.70-2.59), exhibiting a predisposing effect, and HLA-B-97R (p = 3.40 × 10-8; OR, 0.63; 95% CI 0.53-0.74), conferring a protective effect. Computational docking analysis suggested a close relationship between the NR1 subunit of NMDAR and DQB1*05:02. DISCUSSION: Our findings indicate that genetic variation in IFIH1, involved in the type I interferon signaling pathway and innate immunity, along with variations in the HLA class I and class II genes, has substantial implications for the susceptibility to anti-NMDAR encephalitis in the Chinese Han population.


Anti-N-Methyl-D-Aspartate Receptor Encephalitis , HLA-DQ beta-Chains , Interferon-Induced Helicase, IFIH1 , Humans , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/genetics , Genome-Wide Association Study , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class II/genetics , HLA-A Antigens/genetics , HLA-DQ beta-Chains/genetics , Interferon-Induced Helicase, IFIH1/genetics
3.
Biotechnol Prog ; : e3460, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38558545

Lung cancer has a high incidence rate and a low cure rate, hence the urgent need for effective treatment methods. Current lung cancer drugs have several drawbacks, including low specificity, poor targeting, drug resistance, and irreversible damage to normal tissues. Therefore, there is a need to develop a safe and effective new drug that can target and kill tumor cells. In this study, we combined nanotechnology and biotechnology to develop a CD133 ligand-modified etoposide-liposome complex (Lipo@ETP-CD133) for targeted therapy of lung cancer. The CD133 ligand targeted lung cancer stem cells, causing the composite material to aggregate at the tumor site, where high levels of ETP liposomes could exert a strong tumor-killing effect. Our research results demonstrated that this nano-drug had efficient targeting and tumor-killing effects, indicating its potential for clinical application.

4.
Plant J ; 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38565306

Poor management and excess fertilization of apple (Malus domestica Borkh.) orchards are causing increasingly serious soil acidification, resulting in Al toxicity and direct poisoning of roots. Strigolactones (SLs) are reported to be involved in plant responses to abiotic stress, but their role and mechanism under AlCl3 stress remain unknown. Here, we found that applying 1 µm GR24 (an SL analoge) significantly alleviated AlCl3 stress of M26 apple rootstock, mainly by blocking the movement of Al through cell wall and by vacuolar compartmentalization of Al. RNA-seq analysis identified the core transcription factor gene MdWRKY53, and overexpressing MdWRKY53 enhanced AlCl3 tolerance in transgenic apple plants through the same mechanism as GR24. Subsequently, we identified MdPMEI45 (encoding pectin methylesterase inhibitor) and MdALS3 (encoding an Al transporter) as downstream target genes of MdWRKY53 using chromatin immunoprecipitation followed by sequencing (ChIP-seq). GR24 enhanced the interaction between MdWRKY53 and the transcription factor MdTCP15, further increasing the binding of MdWRKY53 to the MdPMEI45 promoter and inducing MdPMEI45 expression to prevent Al from crossing cell wall. MdWRKY53 also bound to the promoter of MdALS3 and enhanced its transcription to compartmentalize Al in vacuoles under AlCl3 stress. We therefore identified two modules involved in alleviating AlCl3 stress in woody plant apple: the SL-WRKY+TCP-PMEI module required for excluding external Al by blocking the entry of Al3+ into cells and the SL-WRKY-ALS module allowing internal detoxification of Al through vacuolar compartmentalization. These findings lay a foundation for the practical application of SLs in agriculture.

5.
Int J Biol Macromol ; 268(Pt 2): 130853, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38570000

BACKGROUND: Pulmonary hypertension (PH) is a complex vascular disorder, characterized by pulmonary vessel remodeling and perivascular inflammation. Pulmonary arterial smooth muscle cells (PASMCs) pyroptosis is a novel pathological mechanism implicated of pulmonary vessel remodeling. However, the involvement of circRNAs in the process of pyroptosis and the underlying regulatory mechanisms remain inadequately understood. METHODS: Western blotting, PI staining and LDH release were used to explore the role of circLrch3 in PASMCs pyroptosis. Moreover, S9.6 dot blot and DRIP-PCR were used to assess the formation of R-loop between circLrch3 and its host gene Lrch3. Chip-qPCR were used to evaluate the mechanism of super enhancer-associated circLrh3, which is transcriptionally activated by the transcription factor Tbx2. RESULTS: CircLrch3 was markedly upregulated in hypoxic PASMCs. CircLrch3 knockdown inhibited hypoxia induced PASMCs pyroptosis in vivo and in vitro. Mechanistically, circLrch3 can form R-loop with host gene to upregulate the protein and mRNA expression of Lrch3. Furthermore, super enhancer interacted with the Tbx2 at the Lrch3 promoter locus, mediating the augmented transcription of circLrch3. CONCLUSION: Our findings clarify the role of a super enhancer-associated circLrch3 in the formation of R-loop with the host gene Lrch3 to modulate pyroptosis in PASMCs, ultimately promoting the development of PH.

6.
Ultrason Sonochem ; 106: 106884, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38677267

The purpose of this study was to investigate ferroptosis in Escherichia coli O157:H7 caused by ferrous sulfate (FeSO4) and to examine the synergistic effectiveness of FeSO4 combined with ultrasound-emulsified cinnamaldehyde nanoemulsion (CALNO) on inactivation of E. coli O157:H7 in vitro and in vivo. The results showed that FeSO4 could cause ferroptosis in E. coli O157:H7 via generating reactive oxygen species (ROS) and exacerbating lipid peroxidation. In addition, the results indicated that FeSO4 combined with CALNO had synergistic bactericidal effect against E. coli O157:H7 and the combined treatment could lead considerable nucleic acids and protein to release by damaging the cell membrane of E. coli O157:H7. Besides, FeSO4 combined with CALNO had a strong antibiofilm ability to inhibit E. coli O157:H7 biofilm formation by reducing the expression of genes related on biofilm formation. Finally, FeSO4 combined with CALNO exhibited the significant antibacterial activity against E. coli O157:H7 in hami melon and cherry tomato.

7.
Sci Total Environ ; 923: 171510, 2024 May 01.
Article En | MEDLINE | ID: mdl-38453076

Shallow waters are characterized by fluctuating environmental conditions, modulating marine life cycles and biological phenomena. Multiple variations in water temperature could affect eggs and embryos during spawning events of many marine invertebrate species, yet most of the findings on embryonic development in invertebrates come from experiments based on the constant temperature. In this study, to examine the effects of temperature variation on octopus embryos, Amphioctopus fangsiao, a common shallow-water octopus along the coast of China, was exposed to the constant temperature (18 °C, in situ temperature of the seawater in Lianyungang), ramping temperatures (from 18 to 24 °C), diel oscillating temperatures (18 °C and 20 °C for 12 h each day), and acute increasing temperatures (the temperature increased sharply from 18 °C to 24 °C at embryonic development stage XIX) for 47 days (from embryogenesis to settlement). The results demonstrated that the temperature variations accelerated the development time of A. fangsiao embryos. Temperature fluctuations could cause embryonic oxidative damage and disorder of glycolipid metabolism, thereby affecting the growth performance of embryos and the survival rate of hatchings. Through transcriptome sequencing, the mechanistic adaption of the embryo to environmental temperature variations was revealed. The pathways involved in the TCA cycle, DNA replication and repair, protein synthesis, cell signaling, and nervous system damage repair were significantly enriched, indicating that the embryo could improve heat tolerance to thermal stress by regulating gene expression. Moreover, acute warming temperatures posed the most detrimental effects on A. fangsiao embryos, which could cause embryos to hatch prematurely from the vegetal pole, further reducing the survival of hatchings. Meanwhile, the diel oscillating temperature was observed to affect the normal morphology of the embryo, resulting in embryo deformities. Thus, the constant temperature is critical for balanced growth and defense status in octopuses by maintaining metabolism homeostasis. For the first time, this study evaluates the effects of multiple temperature fluctuations on embryos of A. fangsiao, providing new insights into the physiological changes and molecular responses of cephalopod embryos following dynamic temperature stress.


Octopodiformes , Animals , Humans , Infant, Newborn , Temperature , Water , Embryo, Nonmammalian/physiology , Embryonic Development
8.
Genet Test Mol Biomarkers ; 28(3): 123-130, 2024 Mar.
Article En | MEDLINE | ID: mdl-38546281

Objective: This study aims to identify causal variants associated with vitiligo in an expanded region of 10q22.1. Materials and Methods: We conducted a fine-scale deep analysis of the expanded 10q22.1 region using in a large genome-wide association studies dataset consisting of 1117 cases and 1701 controls through imputation. We selected five nominal coding single nucleotide polymorphisms (SNPs) located in SLC29A3 and CDH23 and genotyped them in an independent cohort of 2479 cases and 2451 controls in a Chinese Han population cohort using the Sequenom MassArray iPLEX1 system. Results: A missense SNP in SLC29A3, rs2252996, showed strong evidence of association with vitiligo (p = 1.34 × 10-8, odds ratio [OR] = 0.82). Three synonymous SNPs (rs1084004 in SLC29A3; rs12218559 and rs10999978 in CDH23) provided suggestive evidence of association for vitiligo (p = 1.69 × 10-6, OR = 0.84; p = 9.47 × 10-5, OR = 1.18; p = 6.90 × 10-4, OR = 1.16, respectively). Stepwise conditional analyses identified two significant independent disease-associated signals from the four SNPs (both p < 0.05; both D' = 0.03; and r2 = 0.00). Conclusion: The study identifies four genetic coding variants in SLC29A3 and CDH23 on 10q22.1 that may contribute to vitiligo susceptibility with one missense variant affecting disease subphenotypes. The presence of multiple genetic variants underscores their significant role in the genetic pathogenesis of the disease.


Cadherin Related Proteins , Nucleoside Transport Proteins , Vitiligo , Humans , China , Genome-Wide Association Study , Genotype , Nucleoside Transport Proteins/genetics , Vitiligo/genetics , East Asian People , Cadherin Related Proteins/genetics
9.
Nutr Diabetes ; 14(1): 7, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38429305

BACKGROUND: Anthocyanins are a group of natural products widely found in plants. They have been found to alleviate the disorders of glucose metabolism in type 2 diabetes mellitus (T2DM), while the underlying mechanisms remain unclear. METHODS: HepG2 and L02 cells were incubated with 0.2 mM PA and 30 mM glucose for 24 h to induce IR, and cells treated with 5 mM glucose were used as the control. C57BL/6 J male mice and db/db male mice were fed with a chow diet and gavaged with pure water or cyanidin-3-O-glucoside (C3G) solution (150 mg/kg/day) for 6 weeks. RESULTS: In this study, the anthocyanin C3G, extracted from red bayberry, was found to alleviate disorders of glucose metabolism, which resulted in increased insulin sensitivity in hepatocytes, and achieved by enhancing the glucose consumption as well as glycogen synthesis in insulin resistance (IR) hepatpcytes. Subsequently, the expression of key proteins involved in IR was detected by western blotting analysis. Protein tyrosine phosphatase-1B (PTP1B), a negative regulator of insulin signaling, could reduce cellular sensitivity to insulin by inhibiting the phosphorylation of insulin receptor substrate-2 (IRS-2). Results of this study showed that C3G inhibited the increase in PTP1B after high glucose and palmitic acid treatment. And this inhibition was accompanied by increased phosphorylation of IRS proteins. Furthermore, the effect of C3G on improving IR in vivo was validated by using a diabetic db/db mouse model. CONCLUSION: These findings demonstrated that C3G could alleviate IR in vitro and in vivo to increase insulin sensitivity, which may offer a new insight for regulating glucose metabolism during T2DM by using the natural dietary bioactive components. C3G promotes the phosphorylation of IRS-2 proteins by suppressing the expression of PTP1B, and then enhances the sensitivity of hepatocyte to insulin.


Diabetes Mellitus, Type 2 , Insulin Resistance , Mice , Animals , Insulin/metabolism , Anthocyanins/pharmacology , Anthocyanins/therapeutic use , Anthocyanins/metabolism , Insulin Resistance/physiology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Glucosides/pharmacology , Glucosides/therapeutic use , Mice, Inbred C57BL , Hepatocytes/metabolism , Glucose/metabolism
10.
J Agric Food Chem ; 72(13): 7140-7154, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38518253

Microplastics derived from plastic waste have emerged as a pervasive environmental pollutant with potential transfer and accumulation through the food chain, thus posing risks to both ecosystems and human health. The gut microbiota, tightly intertwined with metabolic processes, exert substantial influences on host physiology by utilizing dietary compounds and generating bacterial metabolites such as tryptophan and bile acid. Our previous studies have demonstrated that exposure to microplastic polystyrene (PS) disrupts the gut microbiota and induces colonic inflammation. Meanwhile, intervention with cyanidin-3-O-glucoside (C3G), a natural anthocyanin derived from red bayberry, could mitigate colonic inflammation by reshaping the gut bacterial composition. Despite these findings, the specific influence of gut bacteria and their metabolites on alleviating colonic inflammation through C3G intervention remains incompletely elucidated. Therefore, employing a C57BL/6 mouse model, this study aims to investigate the mechanisms underlying how C3G modulates gut bacteria and their metabolites to alleviate colonic inflammation. Notably, our findings demonstrated the efficacy of C3G in reversing the elevated levels of pro-inflammatory cytokines (IL-6, IL-1ß, and TNF-α) and the upregulation of mRNA expression (Il-6, Il-1ß, and Tnf-α) induced by PS exposure. Meanwhile, C3G effectively inhibited the reduction in levels (IL-22, IL-10, and IL-4) and the downregulation of mRNA expression (Il-22, Il-10, and Il-4) of anti-inflammatory cytokines induced by PS exposure. Moreover, PS-induced phosphorylation of the transcription factor NF-κB in the nucleus, as well as the increased level of protein expression of iNOS and COX-2 in the colon, were inhibited by C3G. Metabolisms of gut bacterial tryptophan and bile acids have been extensively implicated in the regulation of inflammatory processes. The 16S rRNA high-throughput sequencing disclosed that PS treatment significantly increased the abundance of pro-inflammatory bacteria (Desulfovibrio, norank_f_Oscillospiraceae, Helicobacter, and Lachnoclostridium) while decreasing the abundance of anti-inflammatory bacteria (Dubosiella, Akkermansia, and Alistipes). Intriguingly, C3G intervention reversed these pro-inflammatory changes in bacterial abundances and augmented the enrichment of bacterial genes involved in tryptophan and bile acid metabolism pathways. Furthermore, untargeted metabolomic analysis revealed the notable upregulation of metabolites associated with tryptophan metabolism (shikimate, l-tryptophan, indole-3-lactic acid, and N-acetylserotonin) and bile acid metabolism (3b-hydroxy-5-cholenoic acid, chenodeoxycholate, taurine, and lithocholic acid) following C3G administration. Collectively, these findings shed new light on the protective effects of dietary C3G against PS exposure and underscore the involvement of specific gut bacterial metabolites in the amelioration of colonic inflammation.


Gastrointestinal Microbiome , Interleukin-10 , Mice , Animals , Humans , Anthocyanins/pharmacology , RNA, Ribosomal, 16S , Tumor Necrosis Factor-alpha/pharmacology , Plastics/pharmacology , Polystyrenes/pharmacology , Interleukin-6/pharmacology , Interleukin-4 , Ecosystem , Tryptophan/pharmacology , Mice, Inbred C57BL , Cytokines/genetics , Cytokines/metabolism , Inflammation/drug therapy , Inflammation/genetics , Anti-Inflammatory Agents/pharmacology , Glucosides/pharmacology , Bile Acids and Salts/pharmacology , RNA, Messenger
11.
Cancer Biol Med ; 21(4)2024 Feb 29.
Article En | MEDLINE | ID: mdl-38425216

OBJECTIVE: The human cluster of differentiation (CD)300A, a type-I transmembrane protein with immunoreceptor tyrosine-based inhibitory motifs, was investigated as a potential immune checkpoint for human natural killer (NK) cells targeting hematologic malignancies (HMs). METHODS: We implemented a stimulation system involving the CD300A ligand, phosphatidylserine (PS), exposed to the outer surface of malignant cells. Additionally, we utilized CD300A overexpression, a CD300A blocking system, and a xenotransplantation model to evaluate the impact of CD300A on NK cell efficacy against HMs in in vitro and in vivo settings. Furthermore, we explored the association between CD300A and HM progression in patients. RESULTS: Our findings indicated that PS hampers the function of NK cells. Increased CD300A expression inhibited HM lysis by NK cells. CD300A overexpression shortened the survival of HM-xenografted mice by impairing transplanted NK cells. Blocking PS-CD300A signals with antibodies significantly amplified the expression of lysis function-related proteins and effector cytokines in NK cells, thereby augmenting the ability to lyse HMs. Clinically, heightened CD300A expression correlated with shorter survival and an "exhausted" phenotype of intratumoral NK cells in patients with HMs or solid tumors. CONCLUSIONS: These results propose CD300A as a potential target for invigorating NK cell-based treatments against HMs.


Hematologic Neoplasms , Killer Cells, Natural , Receptors, Immunologic , Humans , Killer Cells, Natural/immunology , Animals , Mice , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Hematologic Neoplasms/immunology , Hematologic Neoplasms/therapy , Xenograft Model Antitumor Assays , Female , Antigens, CD/metabolism , Antigens, CD/immunology , Male , Cell Line, Tumor , Cytotoxicity, Immunologic , Phosphatidylserines/metabolism
12.
Mol Genet Genomic Med ; 12(2): e2385, 2024 Feb.
Article En | MEDLINE | ID: mdl-38337174

BACKGROUND: Oculocutaneous albinism type 4 (OCA4) is a rare autosomal recessive disorder characterized by a reduction of pigmentation in skin, hair, and eyes, and OCA4 is mainly seen in the SLC45A2 gene variants. OBJECTIVE: To report a Chinese patient suspected of oculocutaneous albinism and identify the causing mutation. METHODS: Genomic DNA was extracted from the peripheral blood samples of the patient, his parents, and elder brother. Whole exome sequencing was performed in the family, and Sanger sequencing was then used to verify the mutations. RESULTS: Compound heterozygous variants, c.1304C>A (p.S435Y) and c.301C>G (p.R101G) in SLC45A2 gene, were detected in the proband, which were inherited from his father and mother respectively. Based on the ACMG guidelines, we can interpret the c.1304C>A (p.S435Y) variant as a suspected pathogenic variant and the c.301C>G (p.R101G) variant as a clinically significant unspecified variant. The diagnosis of OCA4 is confirmed. CONCLUSION: We firstly reported this case of OCA4 with the compound heterozygous variants in the SLC45A2 gene. Our findings further enrich the reservoir of SLC45A2 mutations in OCA4.


Albinism, Oculocutaneous , Male , Humans , Aged , Mutation , Albinism, Oculocutaneous/genetics , Albinism, Oculocutaneous/diagnosis , DNA , China , Antigens, Neoplasm/genetics , Membrane Transport Proteins/genetics
13.
Sci Rep ; 14(1): 3496, 2024 Feb 12.
Article En | MEDLINE | ID: mdl-38347015

The interior design suffers from inefficiency and a lack of aesthetic appeal. With the development of artificial intelligence diffusion models, using text descriptions to generate aesthetically pleasing designs has emerged as a new approach to address these issues. In this study, we propose a novel method based on the aesthetic diffusion model, which can quickly generate visually appealing interior design based on input text descriptions while allowing for the specification of decorative styles and spatial functions. The method proposed in this study creates creative designs and drawings by computer instead of from designers, thus improving the design efficiency and aesthetic appeal. We demonstrate the potential of this approach in the field of interior design through our research. The results indicate that: (1) The method efficiently provides designers with aesthetically pleasing interior design solutions; (2) By modifying the text descriptions, the method allows for the rapid regeneration of design solutions; (3) Designers can apply this highly flexible method to other design fields through fine-tuning. (4) The method optimizes the workflow of interior design.

14.
Article En | MEDLINE | ID: mdl-38381098

Small muscular pulmonary artery remodeling is a dominant feature of PAH. PSEN1 affects angiogenesis, cancer and Alzheimer's disease. We aimed to determine the role of PSEN1 in the pathogenesis of vascular remodeling in PH. Haemodynamics and vascular remodeling in the Psen1-knockin and smooth muscle-specific Psen1-knockout mice were assessed. The functional partners of PSEN1 were predicted by bioinformatics analysis and biochemical experiments. The therapeutic effect of PH was evaluated by administration of the PSEN1-specific inhibitor ELN318463. We discovered that both the mRNA and protein levels of PSEN1 were increased over time in hypoxic rats, monocrotaline (MCT) rats and Su5416/hypoxia (SuHx) mice. Psen1 transgenic mice were highly susceptible to PH, whereas smooth muscle-specific Psen1-knockout mice were resistant to hypoxic PH. STRING analysis showed that the Notch1/2/3, ß-catenin, Cadherin-1, DNER, TMP10 and ERBB4 appeared to be highly correlated with PSEN1. Immunoprecipitation confirmed that PSEN1 interacts with ß-catenin and DNER, and these interactions were suppressed by the catalytic PSEN1 mutations D257A, D385A and C410Y. PSEN1 was found to mediate the nuclear translocation of the Notch1 intracellular domains and activated RBP-Jκ. Octaarginine-coated liposome-mediated pharmacological inhibition of PSEN1 significantly prevented and reversed the pathological process of in hypoxic and MCT induced PH. PSEN1 essentially drives the pathogenesis of PAH and interacted with the non-canonical Notch ligand DNER. PSEN1 can be used as a promising molecular target for treating PAH. PSEN1 inhibitor ELN318463 can prevent and reverse the progression of PH and be developed as a potential anti-PAH drug.

15.
Crit Rev Biotechnol ; : 1-19, 2024 Jan 24.
Article En | MEDLINE | ID: mdl-38267262

Plants, anchored throughout their life cycles, face a unique set of challenges from fluctuating environments and pathogenic assaults. Central to their adaptative mechanisms are transcription factors (TFs), particularly the AP2/ERF superfamily-one of the most extensive TF families unique to plants. This family plays instrumental roles in orchestrating diverse biological processes ranging from growth and development to secondary metabolism, and notably, responses to both biotic and abiotic stresses. Distinguished by the presence of the signature AP2 domain or its responsiveness to ethylene signals, the AP2/ERF superfamily has become a nexus of research focus, with increasing literature elucidating its multifaceted roles. This review provides a synoptic overview of the latest research advancements on the AP2/ERF family, spanning its taxonomy, structural nuances, prevalence in higher plants, transcriptional and post-transcriptional dynamics, and the intricate interplay in DNA-binding and target gene regulation. Special attention is accorded to the ethylene response factor B3 subgroup protein Pti5 and its role in stress response, with speculative insights into its functionalities and interaction matrix in tomatoes. The overarching goal is to pave the way for harnessing these TFs in the realms of plant genetic enhancement and novel germplasm development.

16.
Food Chem ; 441: 138373, 2024 May 30.
Article En | MEDLINE | ID: mdl-38219365

An autoinducer-2 (AI-2) signaling molecule from Bacillus was synthesized, and its mechanism on the biofilm formation and biocontrol ability of B. amyloliquefaciens was verified in vitro and in vivo. The 16S/ITS amplicon sequencing was used to analyze the effect of B. amyloliquefaciens B4 with or without AI-2 on the microflora of pears during storage. The results showed that B. amyloliquefaciens B4 secreted AI-2, which promoted biofilm formation. Additionally, AI-2 at a concentration of 40 µmol/L enhanced the biocontrol ability of B. amyloliquefaciens B4 on postharvest pear and loquat fruits. Finally, amplicon sequencing demonstrated that the addition of AI-2 increased the abundance of B. amyloliquefaciens B4 in fruit by stimulating the growth and biofilm formation of this bacterium.


Bacillus amyloliquefaciens , Bacillus , Eriobotrya , Pyrus , Fruit/microbiology
17.
Nat Mater ; 23(2): 196-204, 2024 Feb.
Article En | MEDLINE | ID: mdl-38191634

The quest for electronic devices that offer flexibility, wearability, durability and high performance has spotlighted two-dimensional (2D) van der Waals materials as potential next-generation semiconductors. Especially noteworthy is indium selenide, which has demonstrated surprising ultra-high plasticity. To deepen our understanding of this unusual plasticity in 2D van der Waals materials and to explore inorganic plastic semiconductors, we have conducted in-depth experimental and theoretical investigations on metal monochalcogenides (MX) and transition metal dichalcogenides (MX2). We have discovered a general plastic deformation mode in MX, which is facilitated by the synergetic effect of phase transitions, interlayer gliding and micro-cracks. This is in contrast to crystals with strong atomic bonding, such as metals and ceramics, where plasticity is primarily driven by dislocations, twinning or grain boundaries. The enhancement of gliding barriers prevents macroscopic fractures through a pinning effect after changes in stacking order. The discovery of ultra-high plasticity and the phase transition mechanism in 2D MX materials holds significant potential for the design and development of high-performance inorganic plastic semiconductors.

19.
Econ Hum Biol ; 52: 101335, 2024 Jan.
Article En | MEDLINE | ID: mdl-38070227

This study examines the impacts of childhood exposure to the Nutrition Improvement Program (NIP), which provides free school meals to eligible students in rural China, on adult labor market outcomes. Using data from the China Family Panel Studies, we employ a cohort difference-in-differences (DID) design to identify the NIP's long-term effects. The results show that early-life exposure to the NIP has increased adulthood employment probability by 6.5 percentage points. Childhood exposure to the NIP has also resulted in an average increase of 12.4% in adult hourly wages and 10.3% in annual income. These findings remain robust to a battery of validity checks. Our heterogeneous analysis demonstrates that these effects are more pronounced among those who are females and from households with low socioeconomic status. Further, we find that exposure to the NIP yields lasting beneficial effects on adult education attainment, cognitive and non-cognitive skills, as well as health and health behaviors. This suggests that improvements in human capital accumulation and health behaviors are potential mechanisms contributing to the long-term labor market consequences of the NIP. Our study sheds light on the enduring impacts of school-based nutrition intervention on individuals' economic well-being in developing countries.


Cognition , Income , Adult , Female , Humans , Male , Socioeconomic Factors , Educational Status , China/epidemiology , Economics
20.
Plant Sci ; 340: 111965, 2024 Mar.
Article En | MEDLINE | ID: mdl-38142750

Drought stress is increasing worldwide due to global warming, which severely reduces apple (Malus domestica) yield. Clarifying the basis of drought tolerance in apple could accelerate the molecular breeding of drought-tolerant cultivars to maintain apple production. We identified a transcription factor MdWRKY50 by yeast two-hybrid (Y2H) assays as an interactor of the drought-tolerant protein MdWRKY17, and confirmed their interaction by bimolecular fluorescence complementation (BiFC) and pull-down assays. MdWRKY50 was induced by drought and when overexpressed in apple, conferred transgenic apple plants enhanced drought tolerance by directly binding to the promoter of anthocyanin synthetic gene Chalcone synthase (MdCHS) to upregulate its expression for higher anthocyanin. Increased anthocyanin relieves apple plants from oxidative damage under drought stress. MdWRKY50 RNA-interference transgenic apple plants showed opposite phenotypes. The dimerization of MdWRKY50 with mutated MdWRKY17DP mimicking drought-induced phosphorylation by the mitogen-activated protein kinase kinase 2 (MEK2)-MPK6 cascade, compared with MdWRKY17AP and MdWRKY17, further promoted anthocyanin biosynthesis, suggesting dimerization with MdWRKY17 makes MdWRKY50 more powerful in promoting anthocyanin biosynthesis under drought stress. Taken together, we isolated an entire MEK2-MAPK6-MdWRKY17-MdWRKY50-MdCHS pathway for drought tolerance and generated transgenic apple germplasm with enhanced drought tolerance and higher anthocyanin levels.


Malus , Malus/metabolism , Anthocyanins/metabolism , Drought Resistance , Plant Proteins/genetics , Plant Proteins/metabolism , Droughts , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
...