Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
1.
Neuropharmacology ; 257: 110051, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38917939

RESUMEN

Impulsive decision-making has been linked to impulse control disorders and substance use disorders. However, the neural mechanisms underlying impulsive choice are not fully understood. While previous PET imaging and autoradiography studies have shown involvement of dopamine and D2/3 receptors in impulsive behavior, the roles of distinct D1, D2, and D3 receptors in impulsive decision-making remain unclear. In this study, we used a food reward delay-discounting task (DDT) to identify low- and high-impulsive rats, in which low-impulsive rats exhibited preference for large delayed reward over small immediate rewards, while high-impulsive rats showed the opposite preference. We then examined D1, D2, and D3 receptor gene expression using RNAscope in situ hybridization assays. We found that high-impulsive male rats exhibited lower levels of D2 and D3, and particularly D3, receptor expression in the nucleus accumbens (NAc), with no significant changes in the insular, prelimbic, and infralimbic cortices. Based on these findings, we further explored the role of the D3 receptor in impulsive decision-making. Systemic administration of a selective D3 receptor agonist (FOB02-04) significantly reduced impulsive choices in high-impulsive rats but had no effects in low-impulsive rats. Conversely, a selective D3 receptor antagonist (VK4-116) produced increased both impulsive and omission choices in both groups of rats. These findings suggest that impulsive decision-making is associated with a reduction in D3 receptor expression in the NAc. Selective D3 receptor agonists, but not antagonists, may hold therapeutic potentials for mitigating impulsivity in high-impulsive subjects.

2.
Gene ; 927: 148697, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38880186

RESUMEN

Protocatechualdehyde is a plant natural phenolic aldehyde and an active ingredient with important bioactivities in traditional Chinese medicine. Protocatechualdehyde is also a key intermediate in the synthesis of Amaryllidaceae alkaloids for supplying the C6-C1 skeleton. However, the biosynthesis of protocatechualdehyde in plants remains obscure. In this study, we measured the protocatechualdehyde contents in the root, bulb, scape and flower of the Amaryllidaceae plant Lycoris aurea (L'Hér.) Herb., and performed the correlation analysis between the protocatechualdehyde contents and the transcriptional levels of the phenolic oxidization candidate protein encoding genes. We found that a novel ascorbate peroxidase encoded by the contig_24999 in the L. aurea transcriptome database had potential role in the biosynthesis of protocatechualdehyde. The LauAPX_24999 gene was then cloned from the cDNA of the scape of L. aurea. The transient expression of LauAPX_24999 protein in Arabidopsis protoplasts demonstrated that LauAPX_24999 protein was localized in the cytoplasm, thus belonging to Class II L-ascorbate peroxidase. Subsequently, LauAPX_24999 protein was heterogenously expressed in Escherichia coli, and identified that LauAPX_24999 biosynthesized protocatechualdehyde from p-hydroxybenzaldehyde using L-ascorbic acid as the electron donor. The protein structure modelling and molecular docking indicated that p-hydroxybenzaldehyde could access to the active pocket of LauAPX_24999 protein, and reside at the δ-edge of the heme group while L-ascorbic acid binds at the γ-heme edge. To our knowledge, LauAPX_24999 is the first enzyme discovered in plants able to biosynthesize protocatechualdehyde from p-hydroxybenzaldehyde, and offers a competent enzyme resource for the biosynthesis of Amaryllidaceae alkaloids via synthetic biology.

3.
J Hazard Mater ; 476: 134971, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38908181

RESUMEN

Waste activated sludge (WAS) is a critical reservoir for antibiotic resistance genes (ARGs) due to the prevalent misuse of antibiotics. Horizontal gene transfer (HGT) is the primary mechanism for ARGs spread through mobile genetic elements (MGEs). However, the role of non-antibiotic organophosphorus flame retardants (Cl-OFRs) in ARG transmission in the WAS fermentation system remains unclear. This study examines the effects of tris(2-chloroethyl) phosphate (TCEP), a representative Cl-OFR, on ARG dynamics in WAS fermentation using molecular docking and metagenomic analysis. The results showed a 33.4 % increase in ARG abundance in the presence of TCEP. Interestingly, HGT did not appear to be the primary mechanism of ARG dissemination under TCEP stress, as evidenced by a 2.51 % decrease in MGE abundance. TCEP binds to sludge through hydrogen bonds with a binding energy of - 3.6 kJ/mol, leading to microbial damage and an increase in the proportion of non-viable cells. This interaction prompts a microbial shift toward Firmicutes with thick cell walls, which are significant ARG carriers. Additionally, TCEP induces chromosomal mutations through oxidative stress and the SOS response, contributing to ARG formation. Microorganisms also develop multidrug resistance mechanisms to expel TCEP and mitigate its toxicity. This study provides a comprehensive understanding of Cl-OFRs effects on the ARGs fates in WAS fermentation system and offers guidance for the safe and efficient treatment of Cl-OFRs and WAS.

4.
Biol Psychiatry ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38838841

RESUMEN

BACKGROUND: Past research has illuminated pivotal roles of dopamine D3 receptors (D3R) in the rewarding effects of cocaine and opioids. However, the cellular and neural circuit mechanisms that underlie these actions remain unclear. METHODS: We employed Cre-LoxP techniques to selectively delete D3R from presynaptic dopamine neurons or postsynaptic dopamine D1 receptor (D1R)-expressing neurons in male and female mice. We utilized RNAscope in situ hybridization, immunohistochemistry, real-time polymerase chain reaction, voltammetry, optogenetics, microdialysis, and behavioral assays (n ≥ 8 animals per group) to functionally characterize the roles of presynaptic versus postsynaptic D3R in cocaine and opioid actions. RESULTS: Our results revealed D3R expression in ∼25% of midbrain dopamine neurons and ∼70% of D1R-expressing neurons in the nucleus accumbens. While dopamine D2 receptors (D2R) were expressed in ∼80% dopamine neurons, we found no D2R and D3R colocalization among these cells. Selective deletion of D3R from dopamine neurons increased exploratory behavior in novel environments and enhanced pulse-evoked nucleus accumbens dopamine release. Conversely, deletion of D3R from D1R-expressing neurons attenuated locomotor responses to D1-like and D2-like agonists. Strikingly, deletion of D3R from either cell type reduced oxycodone self-administration and oxycodone-enhanced brain-stimulation reward. In contrast, neither of these D3R deletions impacted cocaine self-administration, cocaine-enhanced brain-stimulation reward, or cocaine-induced hyperlocomotion. Furthermore, D3R knockout in dopamine neurons reduced oxycodone-induced hyperactivity and analgesia, while deletion from D1R-expressing neurons potentiated opioid-induced hyperactivity without affecting analgesia. CONCLUSIONS: We dissected presynaptic versus postsynaptic D3R function in the mesolimbic dopamine system. D2R and D3R are expressed in different populations of midbrain dopamine neurons, regulating dopamine release. Mesolimbic D3R are critically involved in the actions of opioids but not cocaine.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38600154

RESUMEN

Preclinical research has demonstrated the efficacy of CB1 receptor (CB1R) antagonists in reducing drug-taking behavior. However, clinical trials with rimonabant, a CB1R antagonist with inverse agonist profile, failed due to severe adverse effects, such as depression and suicidality. As a result, efforts have shifted towards developing novel neutral CB1R antagonists without an inverse agonist profile for treating substance use disorders. Here, we assessed AM6527, a CB1R neutral antagonist, in addiction animal models. Our findings revealed that AM6527 did not affect cocaine self-administration under fixed-ratio reinforcement schedules but dose-dependently inhibited it under progressive-ratio reinforcement schedules. Additionally, AM6527 dose-dependently inhibited heroin self-administration under both fixed-ratio and progressive-ratio reinforcement schedules and oral sucrose self-administration under a fixed-ratio reinforcement schedule, as well as cocaine- or heroin-triggered reinstatement of drug-seeking behavior in rats. However, chronic AM6527 administration for five consecutive days significantly inhibited heroin self-administration only during the initial two days, indicating tolerance development. Notably, AM6527 did not produce rewarding or aversive effects by itself in classical electrical intracranial self-stimulation and conditioned place preference tests. However, in optical intracranial self-stimulation (oICSS) maintained by optogenetic stimulation of midbrain dopamine neurons in DAT-cre mice, both AM6527 and rimonabant dose-dependently inhibited dopamine-dependent oICSS behavior. Together, these findings suggest that AM6527 effectively reduces drug-taking and seeking behaviors without rimonabant-like adverse effects. Thus, AM6527 warrants further investigation as a potential pharmacotherapy for opioid and cocaine use disorders.

6.
Discov Nano ; 19(1): 61, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573408

RESUMEN

The functional utilization of recycled polymers has emerged as a current prominent and timely subject. Flexible wearable devices with high sensitivity to conductivity have garnered significant attention in the fields of human healthcare monitoring and personal heat management. One significant obstacle that needs to be addressed is the simultaneous maintenance of both sensing functionality and durability in composite fabrics. In this paper, a collection of durable, breathable, and flexible smart fabric was produced using the scratch coating method. The fabrics were created by utilizing a regenerated polyethylene terephthalate fabric as a base material, incorporating graphene microsheets (G) as a conductive agent, and applying a waterborne polyurethane layer as a surface protective coating. Furthermore, an investigation was conducted to assess their sensing performance and electrothermal performance. The composite fabric exhibits significant advantages in terms of high conductivity (592 S/m), wide strain range, high sensitivity (Gauge factor = 6.04) and fantabulous dynamic stability (2000 cycles) at a mass ratio of Graphene/WPU loading of 8:2. These sensors were successfully utilized to monitor various degrees of real-time human body movements, ranging from significant deformation bending of elbows to slight deformation swallowing. Furthermore, the sensors also exhibit a significant electric heating effect. Specifically, when a voltage of 10 V is applied, the sensors can reach a steady state temperature of 53.3 °C within a mere 30 s. This discovery holds potential for the development of wearable heaters that can be used for on-demand thermal therapy, functional protective clothing, and medical electric heating wearables.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38582939

RESUMEN

Chronic psychostimulant use causes long-lasting changes to neural and cognitive function that persist after long periods of abstinence. As cocaine users transition from drug use to abstinence, a parallel transition from hyperactivity to hypoactivity has been found in orbitofrontal-striatal glucose metabolism and striatal D2/D3-receptor activity. Targeting these changes pharmacologically, using highly selective dopamine D3-receptor (D3R) antagonists and partial agonists, has shown promise in reducing drug-taking, and attenuating relapse in animal models of cocaine and opioid use disorder. However, much less attention has been paid to treating the loss of insight, operationalized as the inability to infer likely outcomes, associated with chronic psychostimulant use. Here we tested the selective D3R antagonist VK4-116 as a treatment for this loss in rats with a prior history of cocaine use. Male and female rats were first trained to self-administer cocaine or a sucrose liquid for 2 weeks. After 4 weeks of abstinence, performance was assessed using a sensory preconditioning (SPC) learning paradigm. Rats were given VK4-116 (15 mg/kg, i.p.) or vehicle 30 min prior to each SPC training session, thus creating four drug-treatment groups: sucrose-vehicle, sucrose-VK4-116, cocaine-vehicle, cocaine-VK4-116. The control groups (sucrose-vehicle, sucrose-VK4-116) showed normal sensory preconditioning, whereas cocaine use (cocaine-vehicle) selectively disrupted responding to the preconditioned cue, an effect that was reversed in the cocaine-VK4-116 group, which demonstrating responding to the preconditioned cue at levels comparable to controls. These preclinical findings demonstrate that highly selective dopamine D3R antagonists, particularly VK4-116, can reverse the long-term negative behavioral consequences of cocaine use.

8.
Neuropharmacology ; 252: 109947, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38631564

RESUMEN

A growing body of research indicates that ß-caryophyllene (BCP), a constituent present in a large number of plants, possesses significant therapeutic properties against CNS disorders, including alcohol and psychostimulant use disorders. However, it is unknown whether BCP has similar therapeutic potential for opioid use disorders. In this study, we found that systemic administration of BCP dose-dependently reduced heroin self-administration in rats under an FR2 schedule of reinforcement and partially blocked heroin-enhanced brain stimulation reward in DAT-cre mice, maintained by optical stimulation of midbrain dopamine neurons at high frequencies. Acute administration of BCP failed to block heroin conditioned place preference (CPP) in male mice, but attenuated heroin-induced CPP in females. Furthermore, repeated dosing with BCP for 5 days facilitated the extinction of CPP in female but not male mice. In the hot plate assay, pretreatment with the same doses of BCP failed to enhance or prolong opioid antinociception. Lastly, in a substitution test, BCP replacement for heroin failed to maintain intravenous BCP self-administration, suggesting that BCP itself has no reinforcing properties. These findings suggest that BCP may have certain therapeutic effects against opioid use disorders with fewer unwanted side-effects by itself.


Asunto(s)
Heroína , Sesquiterpenos Policíclicos , Autoadministración , Animales , Masculino , Heroína/administración & dosificación , Sesquiterpenos Policíclicos/farmacología , Sesquiterpenos Policíclicos/administración & dosificación , Femenino , Ratones , Ratas , Analgésicos Opioides/farmacología , Analgésicos Opioides/administración & dosificación , Sesquiterpenos/farmacología , Sesquiterpenos/administración & dosificación , Ratas Sprague-Dawley , Relación Dosis-Respuesta a Droga , Condicionamiento Operante/efectos de los fármacos , Extinción Psicológica/efectos de los fármacos , Refuerzo en Psicología , Recompensa , Ratones Transgénicos , Nocicepción/efectos de los fármacos , Ratones Endogámicos C57BL
9.
Adv Sci (Weinh) ; 11(24): e2309927, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38498774

RESUMEN

The development of efficient and durable non-precious hydrogen evolution reaction (HER) catalysts for scaling up alkaline water/seawater electrolysis is highly desirable but challenging. Amorphous-crystalline (A-C) heterostructures have garnered attention due to their unusual atomic arrangements at hetero-interfaces, highly exposed active sites, and excellent stability. Here, a heterogeneous synthesis strategy for constructing A-C non-homogeneous interfacial centers of electrocatalysts on nanocages is presented. Isolated PdCo clusters on nanoscale islands in conjunction with Co3S4 A-C, functioning as a bifunctional site "island-sea" synergy, enable the dynamic confinement design of metal active atoms, resulting in excellent HER catalytic activity and durability. The hierarchical structure of hollow porous nanocages and nanoclusters, along with their large surface area and multi-dimensional A-C boundaries and defects, provides the catalyst with abundant active centers. Theoretical calculations demonstrate that the combination of PdCo and Co3S4 regulates the redistribution of interface electrons effectively, promoting the sluggish water-dissociation kinetics at the cluster Co sites. Additionally, PdCo-Co3S4 heterostructure nanocages exhibit outstanding HER activity in alkaline seawater and long-term stability for 100 h, which can be powered by commercial silicon solar cells. This finding significantly advances the development of alkaline seawater electrolysis for large-scale hydrogen production.

10.
J Gastrointest Surg ; 28(3): 301-308, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38445925

RESUMEN

BACKGROUND: Conventional endoscopic mucosal resection (cEMR), EMR with a transparent cap, EMR using a ligation device (EMR-L), EMR after circumferential precutting (EMR-P), and endoscopic submucosal dissection (ESD) have been used for resecting rectal neuroendocrine tumors (r-NETs). However, there is no consensus regarding which is the best treatment. This study aimed to compare the outcomes of the aforementioned 5 techniques for resecting r-NETs by network meta-analysis. METHODS: Electronic databases (PubMed, Cochrane Library, Embase, Ovid Medline, and Web of Science) were systematically searched to include relevant studies published from inception to September 1, 2023. The en bloc resection rate, histologic complete resection rate, positive lateral margin rate, positive vertical margin rate, adverse events rate, and procedure time were compared. RESULTS: A total of 27 studies with a total of 2112 r-NETs were included, and the mean diameter of tumors was 6.24 mm. Pairwise meta-analysis showed that EMR-L and ESD had higher en bloc resection and histologic complete resection rates and lower positive vertical margin rate than those of cEMR in resecting r-NETs. Compared with ESD, EMR-L and EMR-P achieved similar resection rates and significantly shortened the procedure time without increasing adverse events. The network meta-analysis evaluated the surface under the cumulative ranking curves and revealed that EMR-L was the best modality for treating r-NETs considering the comprehensive results of the en bloc resection rate, histologic complete resection rate, positive lateral margin rate, positive vertical margin rate, adverse events rate, and procedure time. CONCLUSION: EMR-L should be recommended as the first-line endoscopic treatment for small r-NETs.


Asunto(s)
Tumores Neuroendocrinos , Neoplasias del Recto , Humanos , Tumores Neuroendocrinos/cirugía , Metaanálisis en Red , Endoscopía , Neoplasias del Recto/cirugía , Bases de Datos Factuales , Márgenes de Escisión
11.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38542425

RESUMEN

Brain-stimulation reward, also known as intracranial self-stimulation (ICSS), is a commonly used procedure for studying brain reward function and drug reward. In electrical ICSS (eICSS), an electrode is surgically implanted into the medial forebrain bundle (MFB) in the lateral hypothalamus or the ventral tegmental area (VTA) in the midbrain. Operant lever responding leads to the delivery of electrical pulse stimulation. The alteration in the stimulation frequency-lever response curve is used to evaluate the impact of pharmacological agents on brain reward function. If a test drug induces a leftward or upward shift in the eICSS response curve, it implies a reward-enhancing or abuse-like effect. Conversely, if a drug causes a rightward or downward shift in the functional response curve, it suggests a reward-attenuating or aversive effect. A significant drawback of eICSS is the lack of cellular selectivity in understanding the neural substrates underlying this behavior. Excitingly, recent advancements in optical ICSS (oICSS) have facilitated the development of at least three cell type-specific oICSS models-dopamine-, glutamate-, and GABA-dependent oICSS. In these new models, a comparable stimulation frequency-lever response curve has been established and employed to study the substrate-specific mechanisms underlying brain reward function and a drug's rewarding versus aversive effects. In this review article, we summarize recent progress in this exciting research area. The findings in oICSS have not only increased our understanding of the neural mechanisms underlying drug reward and addiction but have also introduced a novel behavioral model in preclinical medication development for treating substance use disorders.


Asunto(s)
Roedores , Autoestimulación , Animales , Recompensa , Mesencéfalo , Haz Prosencefálico Medial , Estimulación Eléctrica
12.
Water Res ; 255: 121477, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38520778

RESUMEN

Iodinated X-ray contrast media (ICM) are ubiquitously present in water sources and challenging to eliminate using conventional processes, posing a significant risk to aquatic ecosystems. Ultraviolet light-emitting diodes (UV-LED) emerge as a promising technology for transforming micropollutants in water, boasting advantages such as diverse wavelengths, elimination of chemical additives, and no induction of microorganisms' resistance to disinfectants. The research reveals that iohexol (IOX) degradation escalates as UV wavelength decreases, attributed to enhanced photon utilization efficiency. Pseudo-first-order rate constants (kobs) were determined as 3.70, 2.60, 1.31 and 0.65 cm2 J-1 at UV-LED wavelengths of 255, 265, 275 and 285 nm, respectively. The optical properties of dissolved organic matter (DOM) and anions undeniably influence the UV-LED photolysis process through photon competition and the generation of reactive substances. The influence of Cl- on IOX degradation was insignificant at UV-LED 255, but it promoted IOX degradation at 265, 275 and 285 nm. IOX degradation was accelerated by ClO2-, NO3-and HA due to the formation of various reactive species. In the presence of NO3-, the kobs of IOX followed the order: 265 > 255 > 275 > 285 nm. Photosensitizers altered the spectral dependence of IOX, and the intermediate photoactivity products were detected using electron spin resonance. The transformation pathways of IOX were determined through density functional theory calculations and experiments. Disinfection by-products (DBPs) yields of IOX during UV-LED irradiation decreased as the wavelength increased: 255 > 265 > 275 > 285 nm. The cytotoxicity index value decreased as the UV-LED wavelength increased from 255 to 285 nm. These findings are crucial for selecting the most efficient wavelength for UV-LED degradation of ICM and will benefit future water purification design.

13.
Transl Psychiatry ; 14(1): 101, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374108

RESUMEN

G protein-coupled receptor 55 (GPR55) has been thought to be a putative cannabinoid receptor. However, little is known about its functional role in cannabinoid action and substance use disorders. Here we report that GPR55 is predominantly found in glutamate neurons in the brain, and its activation reduces self-administration of cocaine and nicotine in rats and mice. Using RNAscope in situ hybridization, GPR55 mRNA was identified in cortical vesicular glutamate transporter 1 (VgluT1)-positive and subcortical VgluT2-positive glutamate neurons, with no detection in midbrain dopamine (DA) neurons. Immunohistochemistry detected a GPR55-like signal in both wildtype and GPR55-knockout mice, suggesting non-specific staining. However, analysis using a fluorescent CB1/GPR55 ligand (T1117) in CB1-knockout mice confirmed GPR55 binding in glutamate neurons, not in midbrain DA neurons. Systemic administration of the GPR55 agonist O-1602 didnt impact ∆9-THC-induced analgesia, hypothermia and catalepsy, but significantly mitigated cocaine-enhanced brain-stimulation reward caused by optogenetic activation of midbrain DA neurons. O-1602 alone failed to alter extracellar DA, but elevated extracellular glutamate, in the nucleus accumbens. In addition, O-1602 also demonstrated inhibitory effects on cocaine or nicotine self-administration under low fixed-ratio and/or progressive-ratio reinforcement schedules in rats and wildtype mice, with no such effects observed in GPR55-knockout mice. Together, these findings suggest that GPR55 activation may functionally modulate drug-taking and drug-seeking behavior possibly via a glutamate-dependent mechanism, and therefore, GPR55 deserves further study as a new therapeutic target for treating substance use disorders.


Asunto(s)
Cannabidiol , Cocaína , Receptores de Cannabinoides , Trastornos Relacionados con Sustancias , Animales , Ratones , Ratas , Cannabidiol/análogos & derivados , Cocaína/farmacología , Neuronas Dopaminérgicas/metabolismo , Ácido Glutámico/metabolismo , Ratones Noqueados , Nicotina/farmacología , Preparaciones Farmacéuticas/metabolismo , Receptores de Cannabinoides/metabolismo , Receptores Acoplados a Proteínas G/genética , Trastornos Relacionados con Sustancias/genética , Trastornos Relacionados con Sustancias/metabolismo
14.
Environ Technol ; 45(11): 2132-2143, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36601874

RESUMEN

The efficient removal of 2-Methylisoborneol (2-MIB), a typical odour component, in water treatment plants (WTPs), poses a great challenge to conventional water treatment technology due to its chemical stability. In this study, the combination of ultraviolet light-emitting diode (UV-LED) and chlorine (UV-LED/chlorine) was exploited for 2-MIB removal, and the role of ultraviolet (UV) wavelength was investigated systematically. The results showed that UV or chlorination alone did not degrade 2-MIB effectively, and the UV/chlorine process could degrade 2-MIB efficiently, following the pseudo-first-order kinetic model. The 275 nm UV exhibited higher 2-MIB degradation efficiency in this UV-LED/chlorine system than 254 nm UV, 265 nm UV and 285 nm UV due to the highest mole adsorption coefficient and quantum yield of chlorine in 275 nm UV. ·OH and ·Cl produced in the 275 nm UV/chlorine system played major roles in 2-MIB degradation. HCO3- and Natural organic matter (NOM), prevalent in water, consumed ·OH and ·Cl, thus inhibiting the 2-MIB degradation by UV-LED/chlorine. In addition, NOM and 2-MIB could form a photonic competition effect. The degradation of 2-MIB by UV-LED/chlorine was done mainly through dehydration and demethylation, and odorous intermediates, such as camphor, were produced. 2-MIB was degraded through the α bond fracture and six-membered ring opening to form saturated or unsaturated hydrocarbons and aldehydes. Four DBPs, chloroform (CF), trichloroacetaldehyde (TCE), trichloroacetone (TCP) and dichloroacetone (DCP), were mainly generated, and CF was the most significant by-product.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Cloro/química , Desinfección/métodos , Contaminantes Químicos del Agua/química , Rayos Ultravioleta , Halogenación , Cloroformo , Cinética , Purificación del Agua/métodos , Oxidación-Reducción
15.
Sci Total Environ ; 912: 168920, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38029977

RESUMEN

Pre-oxidation and powdered activate carbon (PAC) are usually used to remove algae and odorants in drinking waterworks. However, the influence of interaction between oxidants and PAC on the treatment performance are scarcely known. This study systematically investigated the combination schemes of four oxidants (KMnO4, NaClO, ClO2, and O3) and PAC on the inactivation of Microcystis aeruginosa cells and removal of four frequently detected odorants in raw water (diethyl disulfide (DEDS), 2,2'-oxybis(1chloropropane) (DCIP), 2-methylisoborneol (2-MIB) and geosmin (GSM)). O3 showed highest pseudo-first-order removal rate for all four compounds and NaClO exhibited highest inactivation rates for the cell viability and Chlorophyll a (Chl-a). The Freundlich model fitted well for the adsorption of DEDS and DCIP by PAC. When treated by combined oxidation/PAC, the removal ratio of algae cells and odorants were lower (at least 1.6 times) than the sum of removal ratios obtained in oxidation or PAC adsorption alone. Among these four oxidants, the highest synchronous control efficiency of odorants (52 %) and algae (66 %) was achieved by NaClO/PAC. Prolonging the dosage time interval promoted the removal rates. The pre-PAC/post-oxidation processes possessed comparable efficiency for the removal of odorants and algae cells comparing with pre-oxidation/post-PAC process, but significantly inhibited formation of disinfection byproducts (DBPs), especially for the formation of C-DBPs (for NaClO and ClO2), bromate (for O3) and chlorate/chlorite (for ClO2). This study could provide a better understanding of improving in-situ operation of the combined pre-treatments of oxidation and PAC for source water.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Oxidantes , Desinfección , Carbón Orgánico , Odorantes , Adsorción , Polvos , Clorofila A , Agua
16.
J Med Chem ; 67(1): 709-727, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38117239

RESUMEN

Atypical dopamine transporter (DAT) inhibitors have shown therapeutic potential in the preclinical models of psychostimulant use disorders (PSUD). In rats, 1-(4-(2-((bis(4-fluorophenyl)methyl)sulfinyl)ethyl)-piperazin-1-yl)-propan-2-ol (JJC8-091, 3b) was effective in reducing the reinforcing effects of both cocaine and methamphetamine but did not exhibit psychostimulant behaviors itself. Improvements in DAT affinity and metabolic stability were desirable for discovering pipeline drug candidates. Thus, a series of 1-(4-(2-bis(4-fluorophenyl)methyl)sulfinyl)alkyl alicyclic amines were synthesized and evaluated for binding affinities at DAT and the serotonin transporter (SERT). Replacement of the piperazine with either a homopiperazine or a piperidine ring system was well tolerated at DAT (Ki range = 3-382 nM). However, only the piperidine analogues (20a-d) showed improved metabolic stability in rat liver microsomes as compared to the previously reported analogues. Compounds 12b and 20a appeared to retain an atypical DAT inhibitor profile, based on negligible locomotor activity in mice and molecular modeling that predicts binding to an inward-facing conformation of DAT.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Cocaína , Ratas , Ratones , Animales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Aminas/farmacología , Relación Estructura-Actividad , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología , Piperidinas/farmacología
17.
Environ Sci Technol ; 57(50): 21190-21199, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38051765

RESUMEN

Bioreduction of Cr(VI) to Cr(III) is a promising technology for removing Cr(VI), but Cr(VI) reduction alone cannot support microbial growth. This study investigated the reduction of Cr(VI) in the presence of three electron acceptors that typically coexist with Cr(VI): NO3-, SO42-, and Fe(III). All three systems could reduce Cr(VI) to Cr(III), but the fate of Cr, its impacts on reduction of the other acceptors, and its impact on the microbial community differed. Although Cr(VI) was continuously removed in the NO3--reduction systems, batch tests showed that denitrification was inhibited primarily through impeding nitrite reduction. The SO42- and Fe(III) reduction systems reduced Cr(VI) using a combination of biotic and abiotic processes. Across all three systems, the abundance of genera capable of reducing Cr(VI) increased following the introduction of Cr(VI). Conversely, the abundance of genera that cannot reduce or resist Cr(VI) decreased, leading to restructuring of the microbial community. Furthermore, the abundance of sulfide oxidizers and Fe(II) oxidizers substantially increased after the introduction of chromate. This study provides fundamental knowledge about how Cr(VI) bioreduction interacts with bioreductions of three other co-contaminating electron acceptors.


Asunto(s)
Cromatos , Compuestos Férricos , Cromatos/metabolismo , Oxidación-Reducción , Electrones , Cromo/metabolismo
18.
Int J Biol Macromol ; 253(Pt 6): 127235, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37793520

RESUMEN

Due to low melt strength and slow crystallization rate, poly (lactic acid) (PLA) foam materials are still not satisfactory. In order to improve the foaming performance of PLA, sericite (GA) was selected as the filler and modified by 3-Aminopropyltriethoxysilane (KH-550). Through melt blending with PLA, azodicarbonamide (ADC) foaming agent was selected for molding foaming, and PLA/GA composite foam was prepared. The addition of GA not only acts as a nucleating agent to improve the crystallization performance of the blend, but also improves its complex viscosity and storage modulus, and enhances its melt strength, so that the compressive strength and impact strength of the prepared composite foam are increased by 265.5 % and 224.0 %, respectively. Compared with PE foam, PLA/GA composite foam showed excellent thermal insulation performance through thermal infrared imaging test. Based on its mechanical and thermal insulation properties, this sample provides new materials for the field of wall insulation and foam packaging. This study provides an effective way to improve the melt strength and workability of PLA.


Asunto(s)
Poliésteres , Dióxido de Silicio , Temperatura , Poliésteres/química , Ácido Láctico/química
19.
Res Sq ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37886574

RESUMEN

Cannabis legalization continues to progress in the USA for medical and recreational purposes. G protein-coupled receptor 55 (GPR55) is a putative "CB3" receptor. However, its functional role in cannabinoid action and drug abuse is not explored. Here we report that GPR55 is mainly expressed in cortical and subcortical glutamate neurons and its activation attenuates nicotine taking and seeking in rats and mice. RNAscope in situ hybridization detected GPR55 mRNA in cortical vesicular glutamate transporter 1 (VgluT1)-positive and subcortical VgluT2-positive glutamate neurons in wildtype, but not GPR55-knockout, mice. GPR55 mRNA was not detected in midbrain dopamine (DA) neurons in either genotype. Immunohistochemistry assays detected GPR55-like staining, but the signal is not GPR55-specific as the immunostaining was still detectable in GPR55-knockout mice. We then used a fluorescent CB1-GPR55 ligand (T1117) and detected GPR55 binding in cortical and subcortical glutamate neurons, but not in midbrain DA neurons, in CB1-knockout mice. Systemic administration of O-1602, a GPR55 agonist, dose-dependently increased extracellular glutamate, not DA, in the nucleus accumbens. Pretreatment with O-1602 failed to alter Δ9-tetrahydrocannabinol (D9-THC)-induced triad effects or intravenous cocaine self-administration, but it dose-dependently inhibited nicotine self-administration under fixed-ratio and progressive-ratio reinforcement schedules in rats and wildtype mice, not in GPR55-knockout mice. O-1602 itself is not rewarding or aversive as assessed by optical intracranial self-stimulation (oICSS) in DAT-Cre mice. These findings suggest that GPR55 is functionally involved in nicotine reward process possibly by a glutamate-dependent mechanism, and therefore, GPR55 deserves further research as a new therapeutic target for treating nicotine use disorder.

20.
bioRxiv ; 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37732238

RESUMEN

Chronic psychostimulant use can cause long lasting changes to neural and cognitive function that persist even after long periods of abstinence. As cocaine users transition from drug use to abstinence, a parallel transition from hyperactivity to hypoactivity has been found in orbitofrontal-striatal glucose metabolism, and striatal D2/D3 receptor activity. Targeting these changes pharmacologically, using highly selective dopamine D3 receptor (D3R) antagonists and partial agonists, has shown significant promise in reducing drug-taking, and attenuating relapse in animal models of cocaine and opioid use disorder. However, much less attention has been focused on treating inflexible and potentially maladaptive non-drug behaviors following chronic psychostimulant use. Here we tested the selective D3R antagonist VK4-116 as a treatment for the long-term behavioral inflexibility in abstinent male and female rats with a prior history of chronic cocaine use. Rats were first trained to self-administer cocaine (0.75 mg/kg/reinforcer) or a sucrose liquid (10%, .04 mL/reinforcer) for 2 weeks (FR1 schedule, max 60 reinforcers in 3 hrs/ day), followed by 4 weeks of abstinence. Cognitive and behavioral flexibilities were then assessed using a sensory preconditioning (SPC) learning paradigm. Rats were given an VK4-116 (15 mg/kg, i.p.) or vehicle 30 mins prior to each SPC training session, thus creating four drug-treatment groups: sucrose-vehicle, sucrose-VK4-116, cocaine-vehicle, cocaine-VK4-116. The control groups (sucrose-vehicle, sucrose-VK4-116) demonstrated significant evidence of flexible SPC behavior, whereas cocaine use (cocaine-vehicle) disrupted SPC behavior. Remarkably, the D3R antagonist VK4-116 mitigated this cocaine deficit in the cocaine-VK4-116 group, demonstrating flexible SPC to levels comparable to the control groups. These preclinical findings demonstrate that highly selective dopamine D3R antagonists, particularly VK4-116, show significant promise as a pharmacological treatment for the long-term negative behavioral consequences of cocaine use disorder.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...