Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
CNS Neurosci Ther ; 30(4): e14503, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-37850654

RESUMEN

AIM: To clarify the role of Eomesodermin (EOMES) to serve as a disease-relevant biomarker and the intracellular molecules underlying the immunophenotype shifting of CD4+T subsets in amyotrophic lateral sclerosis (ALS). METHODS: The derivation and validation cohorts included a total of 148 ALS patients and 101 healthy controls (HCs). Clinical data and peripheral blood were collected. T-cell subsets and the EOMES expression were quantified using multicolor flow cytometry. Serum neurofilament light chain (NFL) was measured. In 1-year longitudinal follow-ups, the ALSFRS-R scores and primary endpoint events were further recorded in the ALS patients of the validation cohort. RESULTS: In the derivation cohort, the CD4+EOMES+T-cell subsets were significantly increased (p < 0.001). EOMES+ subset was positively correlated with increased serum NFL levels in patients with onset longer than 12 months. In the validation cohort, the elevated CD4+EOMES+T-cell proportions and their association with NFL levels were also identified. The longitudinal study revealed that ALS patients with higher EOMES expression were associated with higher progression rates (p = .010) and worse prognosis (p = .003). CONCLUSIONS: We demonstrated that increased CD4+EOMES+T-cell subsets in ALS were associated with disease progression and poor prognosis. Identifying these associations may contribute to a better understanding of the immunopathological mechanism of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Estudios Longitudinales , Esclerosis Amiotrófica Lateral/diagnóstico , Linfocitos T , Pronóstico , Progresión de la Enfermedad , Biomarcadores
2.
Adv Mater ; 34(14): e2110108, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35112405

RESUMEN

Impossible voltage plateau regulation for the cathode materials with fixed active elemental center is a pressing issue hindering the development of Na-superionic-conductor (NASICON)-type Na3 V2 (PO4 )2 F3 (NVPF) cathodes in sodium-ion batteries (SIBs). Herein, a high-entropy substitution strategy, to alter the detailed crystal structure of NVPF without changing the central active V atom, is pioneeringly utilized, achieving simultaneous electronic conductivity enhancement and diffusion barrier reduction for Na+ , according to theoretical calculations. The as-prepared carbon-free high-entropy Na3 V1.9 (Ca,Mg,Al,Cr,Mn)0.1 (PO4 )2 F3 (HE-NVPF) cathode can deliver higher mean voltage of 3.81 V and more advantageous energy density up to 445.5 Wh kg-1 , which is attributed by the diverse transition-metal elemental substitution in high-entropy crystalline. More importantly, high-entropy introduction can help realize disordered rearrangement of Na+ at Na(2) active sites, thereby to refrain from unfavorable discharging behaviors at low-voltage region, further lifting up the mean working voltage to realize a full Na-ion storage at the high voltage plateau. Coupling with a hard carbon (HC) anode, HE-NVPF//HC SIB full cells can deliver high specific energy density of 326.8 Wh kg-1 at 5 C with the power density of 2178.9 W kg-1 . This route means the unlikely potential regulation in NASICON-type crystal with unchangeable active center becomes possible, inspiring new ideas on elevating the mean working voltage for SIB cathodes.

3.
Mol Med Rep ; 25(1)2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34738629

RESUMEN

Modulating the biological status of endothelial progenitor cells (EPCs), such as function and survival, is essential for therapeutic angiogenesis in ischemic vascular disease environments. This study aimed to explore the role and molecular mechanisms underlying Netrin­1 in the viability and angiogenic function of EPCs. EPCs were isolated from the bone barrow of adult C57/BL6 mice. The apoptosis and various functions of EPCs were analyzed in vitro by manipulating the expression of Netrin­1. The TUNEL assay was performed to detect apoptotic EPCs. Cell migration and tube formation assays were performed to detect EPC function. Trypan blue staining was performed to detect cell viability. Western blot analysis was performed to detect the protein expression levels of Netrin­1, CD146 and apoptotic factors. Quantitative PCR analysis was performed to detect the expression levels of Netrin­1 receptors. The results demonstrated that treatment with exogenous Netrin­1 promoted EPC migration and tube formation, whereas transfection with small interfering (si)RNA targeting Netrin­1 exhibited the opposite effects. Exogenous Netrin­1 protected EPCs from hypoxia­induced apoptosis, whereas the interruption of endogenous Netrin­1 enhancement under hypoxia by Netrin­1­siRNA exacerbated the apoptosis of EPCs. Furthermore, CD146, one of the immunoglobulin receptors activated by Netrin­1, was screened for in the present study. Results demonstrated that CD146 did not participate in Netrin­1­promoted EPC function, but mediated the anti­apoptotic effects of Netrin­1 in EPCs. In conclusion, Netrin­1 enhanced the angiogenic function of EPCs and alleviated hypoxia­induced apoptosis, which was mediated by CD146. This biological function of Netrin­1 may provide a potential therapeutic option to promote EPCs for the treatment of ischemic vascular diseases.


Asunto(s)
Apoptosis/fisiología , Netrina-1/metabolismo , Animales , Antígeno CD146/metabolismo , Antígeno CD146/fisiología , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/fisiología , Expresión Génica/genética , Hipoxia/metabolismo , Isquemia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Netrina-1/fisiología , Transducción de Señal/efectos de los fármacos
4.
Asian J Androl ; 23(5): 479-483, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33975987

RESUMEN

The novel coronavirus disease (COVID-19) pandemic is emerging as a global health threat and shows a higher risk for men than women. Thus far, the studies on andrological consequences of COVID-19 are limited. To ascertain the consequences of COVID-19 on sperm parameters after recovery, we recruited 41 reproductive-aged male patients who had recovered from COVID-19, and analyzed their semen parameters and serum sex hormones at a median time of 56 days after hospital discharge. For longitudinal analysis, a second sampling was obtained from 22 of the 41 patients after a median time interval of 29 days from first sampling. Compared with controls who had not suffered from COVID-19, the total sperm count, sperm concentration, and percentages of motile and progressively motile spermatozoa in the patients were significantly lower at first sampling, while sperm vitality and morphology were not affected. The total sperm count, sperm concentration, and number of motile spermatozoa per ejaculate were significantly increased and the percentage of morphologically abnormal sperm was reduced at the second sampling compared with those at first in the 22 patients examined. Though there were higher prolactin and lower progesterone levels in patients at first sampling than those in controls, no significant alterations were detected for any sex hormones examined over time following COVID-19 recovery in the 22 patients. Although it should be interpreted carefully, these findings indicate an adverse but potentially reversible consequence of COVID-19 on sperm quality.


Asunto(s)
COVID-19/fisiopatología , SARS-CoV-2 , Semen/fisiología , Espermatozoides/fisiología , Adulto , Astenozoospermia/virología , COVID-19/complicaciones , China , Hormonas Esteroides Gonadales/sangre , Humanos , Masculino , Progesterona/sangre , Prolactina/sangre , Análisis de Semen , Recuento de Espermatozoides , Motilidad Espermática , Espermatozoides/anomalías , Factores de Tiempo
6.
Biochem Biophys Res Commun ; 524(3): 629-635, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32029275

RESUMEN

AIMS: Endothelial progenitor cells (EPCs) are widely accepted to be applied in ischemic diseases. However, the therapeutic potency is largely impeded because of its inviability in these ischemic conditions. Autophagy is recognized to be vital in cell activity. Therefore, we explore the role and the mechanism of autophagy in ischemic EPCs. METHODS AND RESULTS: We applied 7d-cultured bone marrow EPCs to investigate the autophagy status under the oxygen and glucose deprivation (OGD) conditions in vitro, mimicking the in-vivo harsh ischemia and anoxia microenvironment. We found increased EPC apoptosis, accompanied by an impaired autophagy activation. Intriguingly, mTOR inhibitor Rapamycin was incapable to reverse this damped autophagy and EPC damage. We further found that autophagy pathway downstream Vps34-Beclin1-Atg14 complex assembly and activity were impaired in OGD conditions, and an autophagy-inducing peptide Tat-Beclin1 largely recovered the impaired complex activity and attenuated OGD-stimulated EPC injury through restoring autophagy activation. CONCLUSIONS: The present study discovered that autophagy activation is inhibited when EPCs located in the ischemia and anoxia conditions. Restoration of Vps34 complex activity obtains sufficient autophagy, thus promoting EPC survival, which will provide a potential target and advance our understanding of autophagy manipulation in stem cell transplantation.


Asunto(s)
Autofagia , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/patología , Isquemia/patología , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Beclina-1/metabolismo , Células Progenitoras Endoteliales/efectos de los fármacos , Glucosa/deficiencia , Masculino , Ratones Endogámicos C57BL , Oxígeno , Sirolimus/farmacología , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 60(5): 1085-90, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15084327

RESUMEN

The effects of acidity on fluorescence originated from rhodamine 6G (R6G) molecules adsorbed at the air-water interface of extremely low-concentration aqueous solutions have been studied with confocal fluorescence microscopy. Similarities and differences in the observed acidity effects between R6G molecules at the interface and those in the bulk solution have been discussed. With increasing the subphase-pH from 1 to 6, height and frequency of photon bursts as well as intensity of the interface-originated fluorescence change in two steps, while bulk fluorescence changes in one step and a little change in the number of adsorbed R6G molecules is verified with surface tension measurements. The results suggest that there is an interface-specific equilibrium among the chemical forms of R6G molecules. Chemical forms contributing to the interface-originated fluorescence above pH 5 are discussed.


Asunto(s)
Colorantes Fluorescentes/farmacología , Microscopía Confocal/métodos , Rodaminas/farmacología , Espectrometría de Fluorescencia/métodos , Adsorción , Aire , Colorantes Fluorescentes/química , Concentración de Iones de Hidrógeno , Fotones , Rodaminas/química , Propiedades de Superficie , Temperatura , Factores de Tiempo , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA