Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
BMC Plant Biol ; 23(1): 584, 2023 Nov 22.
Article En | MEDLINE | ID: mdl-37993774

BACKGROUND: The aleurone layer is a part of many plant seeds, and during seed germination, aleurone cells undergo PCD, which is promoted by GA from the embryo. However, the numerous components of the GA signaling pathway that mediate PCD of the aleurone layers remain to be identified. Few genes and transcriptomes have been studied thus far in aleurone layers to improve our understanding of how PCD occurs and how the regulatory mechanism functions during PCD. Our previous studies have shown that histone deacetylases (HDACs) are required in GA-induced PCD of aleurone layer. To further explore the molecular mechanisms by which epigenetic modifications regulate aleurone PCD, we performed a global comparative transcriptome analysis of embryoless aleurones treated with GA or histone acetylase (HAT) inhibitors. RESULTS: In this study, a total of 7,919 differentially expressed genes (DEGs) were analyzed, 2,554 DEGs of which were found to be common under two treatments. These identified DEGs were involved in various biological processes, including DNA methylation, lipid metabolism and ROS signaling. Further investigations revealed that inhibition of DNA methyltransferases prevented aleurone PCD, suggesting that active DNA methylation plays a role in regulating aleurone PCD. GA or HAT inhibitor induced lipoxygenase gene expression, leading to lipid degradation, but this process was not affected by DNA methylation. However, DNA methylation inhibitor could regulate ROS-related gene expression and inhibit GA-induced production of hydrogen peroxide (H2O2). CONCLUSION: Overall, linking of lipoxygenase, DNA methylation, and H2O2 may indicate that GA-induced higher HDAC activity in aleurones causes breakdown of lipids via regulating lipoxygenase gene expression, and increased DNA methylation positively mediates H2O2 production; thus, DNA methylation and lipid metabolism pathways may represent an important and complex signaling network in maize aleurone PCD.


Gibberellins , Zea mays , Reactive Oxygen Species/metabolism , Gibberellins/metabolism , Zea mays/genetics , Zea mays/metabolism , Lipid Metabolism/genetics , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , DNA Methylation , Seeds/genetics , Seeds/metabolism , Gene Expression Profiling , Lipoxygenases/genetics , Lipoxygenases/metabolism , Gene Expression Regulation, Plant
2.
Front Pharmacol ; 14: 1130399, 2023.
Article En | MEDLINE | ID: mdl-37063290

Background: Thyroid cancer is a common malignant tumor of the endocrine system that has shown increased incidence in recent decades. We explored the relationship between tumor-infiltrating immune cell classification and the prognosis of thyroid carcinoma. Methods: RNA-seq, SNV, copy number variance (CNV), and methylation data for thyroid cancer were downloaded from the TCGA dataset. ssGSEA was used to calculate pathway scores. Clustering was conducted using ConsensusClusterPlus. Immune infiltration was assessed using ESTIMATE and CIBERSORT. CNV and methylation were determined using GISTIC2 and the KNN algorithm. Immunotherapy was predicted based on TIDE analysis. Results: Three molecular subtypes (Immune-enrich(E), Stromal-enrich(E), and Immune-deprived(D)) were identified based on 15 pathways and the corresponding genes. Samples in Immune-E showed higher immune infiltration, while those in Immune-D showed increased tumor mutation burden (TMB) and mutations in tumor driver genes. Finally, Immune-E showed higher CDH1 methylation, higher progression-free survival (PFS), higher suitability for immunotherapy, and higher sensitivity to small-molecule chemotherapeutic drugs. Additionally, an immune score (IMScore) based on four genes was constructed, in which the low group showed better survival outcome, which was validated in 30 cancers. Compared to the TIDE score, the IMScore showed better predictive ability. Conclusion: This study constructed a prognostic evaluation model and molecular subtype system of immune-related genes to predict the thyroid cancer prognosis of patients. Moreover, the interaction network between immune genes may play a role by affecting the biological function of immune cells in the tumor microenvironment.

3.
Sci Total Environ ; 852: 158499, 2022 Dec 15.
Article En | MEDLINE | ID: mdl-36058327

Drought-land cover change (D-LCC) is considered to be an important stress factor that affects vegetation greenness and productivity (VG&P) in global terrestrial ecosystems. Understanding the effects of D-LCC on VG&P benefits the development of terrestrial ecosystem models and the prediction of ecosystem evolution. However, till today, the mechanism remains underexploited. In this study, based on the Theil-Sen median estimator and Mann-Kendall test, Hurst exponent evaluation and rescaled range analysis (R/S), Pearson and Partial correlation coefficient analyses, we explore the spatiotemporal distribution characteristics and future trends of Leaf area index (LAI), Net primary productivity (NPP), Solar-induced chlorophyll fluorescence (SIF), Standardized precipitation evapotranspiration index (SPEI), Soil moisture (SM), Land cover type (LC), and the impact mechanism of D-LCC on global VG&P. Our results provide four major insights. First, three independent satellite observations consistently indicate that the world is experiencing an increasing trend of VG&P: LAI (17.69 %), NPP (20.32 %) and SIF (16.46 %). Nonetheless, productivity-reducing trends are unfolding in some tropical regions, notably the Amazon rainforest and the Congo basin. Second, from 2001 to 2020, the frequency, severity, duration, and scope of global droughts have been increasing. Third, the impact of land cover change on global VG&P is region-dependent. Finally, our results indicate that the continuous growth of VG&P in the global vegetation area is likely to become more difficult to maintain.


Droughts , Ecosystem , Soil , Sunlight , Chlorophyll , Climate Change
4.
Plant Physiol ; 189(2): 858-873, 2022 06 01.
Article En | MEDLINE | ID: mdl-35078247

Lateral roots (LRs) are a main component of the root system of rice (Oryza sativa) that increases root surface area, enabling efficient absorption of water and nutrients. However, the molecular mechanism regulating LR formation in rice remains largely unknown. Here, we report that histone deacetylase 1 (OsHDAC1) positively regulates LR formation in rice. Rice OsHDAC1 RNAi plants produced fewer LRs than wild-type plants, whereas plants overexpressing OsHDAC1 exhibited increased LR proliferation by promoting LR primordia formation. Brassinosteroid treatment increased the LR number, as did mutation of GSK3/SHAGGY-like kinase 2 (OsGSK2), whereas overexpression of OsGSK2 decreased the LR number. Importantly, OsHDAC1 could directly interact with and deacetylate OsGSK2, inhibiting its activity. OsGSK2 deacetylation attenuated the interaction between OsGSK2 and BRASSINAZOLE-RESISTANT 1 (OsBZR1), leading to accumulation of OsBZR1. The overexpression of OsBZR1 increased LR formation by regulating Auxin/IAA signaling genes. Taken together, the results indicate that OsHDAC1 regulates LR formation in rice by deactivating OsGSK2, thereby preventing degradation of OsBZR1, a positive regulator of LR primordia formation. Our findings suggest that OsHDAC1 is a breeding target in rice that can improve resource capture.


Oryza , Gene Expression Regulation, Plant , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Indoleacetic Acids/metabolism , Oryza/genetics , Oryza/metabolism , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Triazoles
5.
Physiol Plant ; 172(4): 2079-2089, 2021 Aug.
Article En | MEDLINE | ID: mdl-33887068

The role of the nucleolus in plant response to heat stress remains largely obscure. Our current efforts focused on exploring the underlying mechanism by which nucleolar disorganization is regulated in heat stressed-maize lines. Here, two maize lines, a heat-sensitive line, ZD958, and a heat-tolerant line, ZDH, were submitted to heat stress for investigating their association with the nucleolar disruption. Immunofluorescence staining showed that nucleolar disruption increased with prolonged treatment time. After heat treatment, a significant change in nucleolus organization was observed in the ZD958 line, but the ZDH line showed mild alteration. Moreover, actinomycin D (ActD)-induced nucleolus fission led to inhibition of maize growth under the normal condition. The ZD958 line exhibited a significant increase in the level of H3K9ac and H4K5ac of the 45S rDNA accompanied by a higher transcription of the 5'-external transcribed spacer (ETS) region, while the line ZDH showed a slight increase in histone acetylation levels and the transcriptional initiation at this site after heat treatment. To our knowledge, this is the first report providing a comparative insight between heat stress, rDNA histone modifications, and nucleolus disintegration in a heat-tolerant ZDH compared with a heat-sensitive line ZD958. Our investigation might assist maize breeders in obtaining heat-tolerant lines by targeting nucleoli using epigenetics.


Histones , Zea mays , Acetylation , Cell Nucleolus/metabolism , DNA, Ribosomal/genetics , Heat-Shock Response/genetics , Histones/metabolism , Zea mays/genetics , Zea mays/metabolism
6.
Sci Rep ; 9(1): 16756, 2019 11 14.
Article En | MEDLINE | ID: mdl-31727905

Species of the genus Allium are well known for their large genomes. Allium cepa is of great economic significance. Among vegetables, it ranks second after tomato in terms of the global production value. However, there is limited genomics information available on A. cepa. In this study, we sequenced the A. cepa genome at low-coverage and annotated repetitive sequences by using a combination of next-generation sequencing (NGS) and bioinformatics tools. Nearly 92% of 16 Gb haploid onion genome were defined as repetitive sequences, organized in 162 clusters of at least 0.01 percent of the genome. Of these, a proportion representing 40.5% of the genome were further analyzed in detail to obtain an overview of representative repetitive elements present in the A. cepa genome. Few representative satellite repeats were studied by fluorescence in situ hybridization (FISH) and southern blotting. These results provided a basis for evolutionary cytogenomics within the Allium genus.


Onions/genetics , Repetitive Sequences, Nucleic Acid , Whole Genome Sequencing/methods , Chromosome Mapping , DNA, Plant/genetics , Genome Size , High-Throughput Nucleotide Sequencing , In Situ Hybridization, Fluorescence
7.
Protoplasma ; 256(5): 1245-1256, 2019 Sep.
Article En | MEDLINE | ID: mdl-31030267

Histone modification plays a significant role in plant responses to abiotic stress. However, there are little scientific studies available on the involvement of dynamic changes in histone modification in the heat stress response in maize. The present investigation was aimed to analyze the epigenetic mechanisms involved in regulating the physiological and biochemical alterations in maize seedlings under heat stress. Our results and observations indicated an increase in electrolyte leakage and hydrolytic activity of the plasma membrane H+-ATPase as well as the high pigment content and reactive oxygen species (ROS) content under high temperature. Furthermore, decondensation of ribosomal DNA (rDNA) chromatin and a simultaneous increase in rRNA gene expression were observed during heat stress, accompanied by a genome-wide increase in the levels of histone H3K4me2 and H3K9ac. Additionally, chromatin immunoprecipitation (ChIP) analysis revealed that alterations in H3K4me2 and H3K9ac levels occurred in promoter regions, which were found to be associated with the upregulation of heat stress factor (Hsf) and rRNA genes. In conclusion, short-term heat stress induces dynamic histone alterations which are associated with Hsf and rRNA gene transcription, accompanied by perturbations of cell membranes and an increase in ROS during acclimation in maize seedlings.


Genes, rRNA/genetics , Histones/metabolism , Plant Proteins/chemistry , Seedlings/chemistry , Seedlings/metabolism , Zea mays/genetics , Heat-Shock Response , Up-Regulation
8.
Front Plant Sci ; 9: 1520, 2018.
Article En | MEDLINE | ID: mdl-30459784

In plants, lateral roots play a crucial role in the uptake of water and nutrients. Several genes such as Zea mays Haem Oxygenase-1 (ZmHO-1) and Giberellic Acid-Stimulated Like-1 (ZmGSL-1) have been found to be involved in lateral root development. In the present investigation, we observed that heat treatment might be involved in the inhibition of lateral root primordium (LRP) formation in maize, accompanied by an increase in global acetylation levels of histone 3 lysine residue 9 (H3K9) and histone 4 lysine residue 5 (H4K5), suggesting that histone modification was related to LRP inhibition. However, Trichostatin A (TSA), an inhibitor of histone deacetylases (HDACs), apparently did not inhibit the LRP formation, revealing that global hyperacetylation might not be the determining factor in the LRP inhibition induced by heat stress. Furthermore, expression of genes related to lateral root development in maize, ZmHO-1 and ZmGSL-1, was down-regulated and the acetylation levels in the promoter region of these two genes were decreased under heat stress, suggesting that promoter-associated histone acetylation might be associated with the expression of ZmHO-1 and ZmGSL-1 genes which were found to be involved in the heat-induced LRP inhibition in maize.

9.
Plant Cell Rep ; 37(1): 115-123, 2018 Jan.
Article En | MEDLINE | ID: mdl-28939922

KEY MESSAGE: The aleurone layer is crucial to seed germination. Using dissected aleurone layers, we found that GA increased histone acetylation accompanied by rDNA decondensation in aleurone layers during maize seed germination. Aleurone layers play an important role in cereal seed germination. In this study, we reported that rDNA chromatin was decondensed, accompanied with increased rDNA expression and genomic global hyperacetylation in gibberellin (GA)-treated maize-dissected aleurone layers. The activity analysis of histone acetyltransferase (HAT) and deacetylase (HDAC) showed that GA increased the level of histone acetylation by promoting the ratio of HAT/HDAC activity in aleurone layers. HDAC inhibitors TSA and CUDC-101 elevated the histone acetylation in aleurone layers accompanied by 45S rDNA decondensation. The further chromatin immunoprecipitation experiments showed that GA treatment promoted the level of histone acetylation in the promoter region of the rRNA and HAT/HDAC genes in aleurone layers. Taken together, these data indicated that histone acetylation mediates GA-regulated 45S rDNA chromatin decondensation in aleurone layers during maize seed germination.


DNA, Ribosomal/metabolism , Gibberellins/pharmacology , Histones/metabolism , Zea mays/genetics , Acetylation , Chromatin/genetics , Chromatin/metabolism , DNA, Ribosomal/chemistry , Germination , Plant Proteins/genetics , Promoter Regions, Genetic , RNA, Ribosomal/genetics , Seeds/genetics , Zea mays/drug effects , Zea mays/metabolism
10.
Plant Physiol ; 175(3): 1484-1496, 2017 Nov.
Article En | MEDLINE | ID: mdl-28972079

Recent discoveries have shown that epigenetic regulation is an integral part of phytohormone-mediated processes. The phytohormone gibberellin (GA) triggers a series of events in cereal aleurone cells that lead to programmed cell death (PCD), but the signaling cascade mediating GA-induced PCD in cereal aleurone layers remains largely unknown. Here, we showed that histone deacetylase (HDAC) activity gradually increased relative to histone acetyltransferase (HAT) activity, leading to a global decrease in histone H3 and H4 acetylation levels during PCD of maize (Zea mays) embryoless aleurone layers after 3 d of treatment with GA. HDAC inhibition prevented GA-induced PCD in embryoless aleurone cells, whereas HAT inhibition resulted in PCD even in the absence of GA. Hydrogen peroxide concentrations increased in GA- or HAT inhibitor-treated aleurone cells due to reduced levels of reactive oxygen species scavengers. Hydrogen peroxide-treated aleurone cells showed no changes in the activity or expression of HATs and HDACs. We show that it is possible to predict whether epigenetic modification enzymes serve as a regulator of the GA-triggered PCD signaling pathway in maize aleurone layers. Taken together, these findings reveal that HDAC activity is required for GA-induced PCD in maize aleurone layers and regulates PCD via the reactive oxygen species-mediated signal transduction pathway.


Apoptosis/drug effects , Gibberellins/pharmacology , Histone Deacetylases/metabolism , Seeds/cytology , Seeds/enzymology , Zea mays/cytology , Zea mays/enzymology , Acetylation , Gene Expression Regulation, Plant , Histones/metabolism , Models, Biological , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Seeds/drug effects , Signal Transduction/drug effects , Time Factors
11.
IEEE Trans Nanobioscience ; 16(7): 563-570, 2017 10.
Article En | MEDLINE | ID: mdl-28622672

In this paper, single-walled carbon nano- tubes (SWCNTs) and multi-walled carbon nano- tubes (MWCNTs) were found to accelerate leaf growth and development of rice seedlings at a low concentration (20 mg/L), accompanied with the increased chlorophyll content and net photosynthetic rate (PN). Quantitative real-time polymerase chain reaction results indicated that both SWCNTs and MWCNTs significantly increased expression of genes associated with chloroplast development and cell sizes. Further analysis revealed that the abscisic acid content decreased and the gibberellin content increased while the content of [Formula: see text] and H2O2 was slightly elevated and the activities of antioxidative enzymes (SOD, EC 1.15.1.1, and POD, EC 1.11.1.7) were differently modulated after treatment with the carbon nanotube (CNT). These results suggest a possible link between reactive oxygen species and plant hormones under CNTs treatment to promote rice seedlings growth.


Nanotubes, Carbon , Oryza/drug effects , Seedlings/drug effects , Biotechnology , Chlorophyll/metabolism , Nanotechnology , Oryza/growth & development , Photosynthesis , Plant Growth Regulators/metabolism , Reactive Oxygen Species/metabolism , Seedlings/growth & development
...