Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 45
1.
Cell Mol Biol Lett ; 29(1): 85, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38834954

The molecular basis for bulk autophagy activation due to a deficiency in essential nutrients such as carbohydrates, amino acids, and nitrogen is well understood. Given autophagy functions to reduce surplus to compensate for scarcity, it theoretically possesses the capability to selectively degrade specific substrates to meet distinct metabolic demands. However, direct evidence is still lacking that substantiates the idea that autophagy selectively targets specific substrates (known as selective autophagy) to address particular nutritional needs. Recently, Gross et al. found that during phosphate starvation (P-S), rather than nitrogen starvation (N-S), yeasts selectively eliminate peroxisomes by dynamically altering the composition of the Atg1/ULK kinase complex (AKC) to adapt to P-S. This study elucidates how the metabolite sensor Pho81 flexibly interacts with AKC and guides selective autophagic clearance of peroxisomes during P-S, providing novel insights into the metabolic contribution of autophagy to special nutritional needs.


Autophagy , Phosphates , Saccharomyces cerevisiae Proteins , Phosphates/metabolism , Phosphates/deficiency , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Peroxisomes/metabolism , Saccharomyces cerevisiae/metabolism , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Kinases
2.
Adv Sci (Weinh) ; : e2310120, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38647423

G-protein-coupled receptors (GPCRs) transmit downstream signals predominantly via G-protein pathways. However, the conformational basis of selective coupling of primary G-protein remains elusive. Histamine receptors H2R and H3R couple with Gs- or Gi-proteins respectively. Here, three cryo-EM structures of H2R-Gs and H3R-Gi complexes are presented at a global resolution of 2.6-2.7 Å. These structures reveal the unique binding pose for endogenous histamine in H3R, wherein the amino group interacts with E2065.46 of H3R instead of the conserved D1143.32 of other aminergic receptors. Furthermore, comparative analysis of the H2R-Gs and H3R-Gi complexes reveals that the structural geometry of TM5/TM6 determines the primary G-protein selectivity in histamine receptors. Machine learning (ML)-based structuromic profiling and functional analysis of class A GPCR-G-protein complexes illustrate that TM5 length, TM5 tilt, and TM6 outward movement are key determinants of the Gs and Gi/o selectivity among the whole Class A family. Collectively, the findings uncover the common structural geometry within class A GPCRs that determines the primary Gs- and Gi/o-coupling selectivity.

3.
Arch Toxicol ; 98(7): 1975-1990, 2024 Jul.
Article En | MEDLINE | ID: mdl-38581585

New human life begins in the uterus in a period of both extreme plasticity and sensitivity to environmental disturbances. The fetal stage is also a vital period for central nervous system development, with experiences at this point profoundly and permanently shaping brain structure and function. As such, some brain disorders may originate in utero. Glucocorticoids, a class of essential stress hormones, play indispensable roles in fetal development, but overexposure may have lasting impacts on the brain. In this review, we summarize data from recent clinical and non-clinical studies regarding alterations in fetal brains due to prenatal glucocorticoid overexposure that are associated with nervous system disorders. We discuss relevant changes to brain structure and cellular functions and explore the underlying molecular mechanisms. In addition, we summarize factors that may cause differential outcomes between varying brain regions, and outline clinically feasible intervention strategies that are expected to minimize negative consequences arising from fetal glucocorticoid overexposure. Finally, we highlight the need for experimental evidence aided by new technologies to clearly determine the effects of excessive prenatal glucocorticoid exposure. This review consolidates diverse findings to help researchers better understand the relationship between the prenatal glucocorticoid overexposure and the effects it has on various fetal brain regions, promoting further development of critical intervention strategies.


Brain Diseases , Brain , Glucocorticoids , Prenatal Exposure Delayed Effects , Humans , Glucocorticoids/adverse effects , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Female , Brain/drug effects , Brain/embryology , Animals , Brain Diseases/chemically induced , Fetal Development/drug effects
6.
Curr Neuropharmacol ; 2024 Jan 29.
Article En | MEDLINE | ID: mdl-38288837

Histamine has long been accepted as a pro-cognitive agent. However, lines of evidence have suggested that the roles of histamine in learning and memory processes are much more complex than previously thought. When explained by the spatial perspectives, there are many contradictory results. However, using emotional memory perspectives, we suspect that the histaminergic system may interplay with stress, reward inhibition, and attention to modulate emotional memory formation. The functional diversity of histamine makes it a viable target for clinical management of neuropsychiatric disorders. Here, we update the current knowledge about the functions of histamine in emotional memory and summarize the underlying molecular and neural circuit mechanisms. Finally, we review the main clinical studies about the impacts of histamine-related compounds on memory and discuss insights into future research on the roles of histamine in emotional memory. Despite the recent progress in histamine research, the histaminergic emotional memory circuits are poorly understood, and it is also worth verifying the functions of histamine receptors in a more spatiotemporally specific manner.

7.
Nat Commun ; 14(1): 7147, 2023 11 06.
Article En | MEDLINE | ID: mdl-37932306

Ischemic stroke is lethal cerebrovascular disease, and reperfusion as the main strategy of blood supply restoration can cause severe ischemic brain damage. Considered as the major obstacle in medication for stroke, neuroinflammation after reperfusion undergoes dynamic progression, making precision treatment for stroke a Herculean task. In this work, we report a pathogenesis-adaptive polydopamine nanosystem for sequential therapy of ischemic stroke. Intrinsic free radical scavenging and tailored mesostructure of the nanosystem can attenuate oxidative stress at the initial stage. Upon microglial overactivation at the later stage, minocycline-loaded nanosystem can timely reverse the pro-inflammatory transition in response to activated matrix metalloproteinase-2, providing on-demand regulation. Further in vivo stroke study demonstrates a higher survival rate and improved brain recovery of the sequential strategy, compared with mono-therapy and combined therapy. Complemented with satisfactory biosafety results, this adaptive nanosystem for sequential and on-demand regulation of post-stroke neuroinflammation is a promising approach to ischemic stroke therapy.


Brain Ischemia , Ischemic Stroke , Stroke , Animals , Matrix Metalloproteinase 2 , Neuroinflammatory Diseases , Disease Models, Animal , Stroke/etiology , Ischemia/complications
9.
Cell Rep ; 42(9): 113073, 2023 09 26.
Article En | MEDLINE | ID: mdl-37676764

Overly strong fear memories can cause pathological conditions. Histamine H3 receptor (H3R) has been viewed as an optimal drug target for CNS disorders, but its role in fear memory remains elusive. We find that a selective deficit of H3R in cholinergic neurons, but not in glutamatergic neurons, enhances freezing level during contextual fear memory retrieval without affecting cued memory. Consistently, genetically knocking down H3R or chemogenetically activating cholinergic neurons in the ventral basal forebrain (vBF) mimics this enhanced fear memory, whereas the freezing augmentation is rescued by re-expressing H3R or chemogenetic inhibition of vBF cholinergic neurons. Spatiotemporal regulation of H3R by a light-sensitive rhodopsin-H3R fusion protein suggests that postsynaptic H3Rs in vBF cholinergic neurons, but not presynaptic H3Rs of cholinergic projections in the dorsal hippocampus, are responsible for modulating contextual fear memory. Therefore, precise modulation of H3R in a cell-type- and subcellular-location-specific manner should be explored for pathological fear memory.


Basal Forebrain , Histamine , Cholinergic Neurons/physiology , Memory/physiology , Fear/physiology
10.
J Pharm Anal ; 13(7): 694-710, 2023 Jul.
Article En | MEDLINE | ID: mdl-37577383

Recent studies have highlighted spatially resolved multi-omics technologies, including spatial genomics, transcriptomics, proteomics, and metabolomics, as powerful tools to decipher the spatial heterogeneity of the brain. Here, we focus on two major approaches in spatial transcriptomics (next-generation sequencing-based technologies and image-based technologies), and mass spectrometry imaging technologies used in spatial proteomics and spatial metabolomics. Furthermore, we discuss their applications in neuroscience, including building the brain atlas, uncovering gene expression patterns of neurons for special behaviors, deciphering the molecular basis of neuronal communication, and providing a more comprehensive explanation of the molecular mechanisms underlying central nervous system disorders. However, further efforts are still needed toward the integrative application of multi-omics technologies, including the real-time spatial multi-omics analysis in living cells, the detailed gene profile in a whole-brain view, and the combination of functional verification.

11.
Aging Dis ; 14(6): 2127-2152, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37199575

Almost all stroke survivors suffer physical disabilities and neuropsychiatric disturbances, which can be briefly divided into post-stroke neurological diseases and post-stroke psychiatric disorders. The former type mainly includes post-stroke pain, post-stroke epilepsy, and post-stroke dementia while the latter one includes post-stroke depression, post-stroke anxiety, post-stroke apathy and post-stroke fatigue. Multiple risk factors are related to these post-stroke neuropsychiatric complications, such as age, gender, lifestyle, stroke type, medication, lesion location, and comorbidities. Recent studies have revealed several critical mechanisms underlying these complications, namely inflammatory response, dysregulation of the hypothalamic pituitary adrenal axis, cholinergic dysfunction, reduced level of 5-hydroxytryptamine, glutamate-mediated excitotoxicity and mitochondrial dysfunction. Moreover, clinical efforts have successfully given birth to many practical pharmaceutic strategies, such as anti-inflammatory medications, acetylcholinesterase inhibitors, and selective serotonin reuptake inhibitors, as well as diverse rehabilitative modalities to help patients physically and mentally. However, the efficacy of these interventions is still under debate. Further investigations into these post-stroke neuropsychiatric complications, from both basic and clinical perspectives, are urgent for the development of effective treatment strategies.

12.
Nat Commun ; 14(1): 2484, 2023 04 29.
Article En | MEDLINE | ID: mdl-37120608

Tissues are highly complicated with spatial heterogeneity in gene expression. However, the cutting-edge single-cell RNA-seq technology eliminates the spatial information of individual cells, which contributes to the characterization of cell identities. Herein, we propose single-cell spatial position associated co-embeddings (scSpace), an integrative method to identify spatially variable cell subpopulations by reconstructing cells onto a pseudo-space with spatial transcriptome references (Visium, STARmap, Slide-seq, etc.). We benchmark scSpace with both simulated and biological datasets, and demonstrate that scSpace can accurately and robustly identify spatially variated cell subpopulations. When employed to reconstruct the spatial architectures of complex tissue such as the brain cortex, the small intestinal villus, the liver lobule, the kidney, the embryonic heart, and others, scSpace shows promising performance on revealing the pairwise cellular spatial association within single-cell data. The application of scSpace in melanoma and COVID-19 exhibits a broad prospect in the discovery of spatial therapeutic markers.


COVID-19 , Single-Cell Analysis , Humans , Single-Cell Analysis/methods , Transcriptome , Sequence Analysis, RNA/methods , Gene Expression Profiling/methods
13.
Proc Natl Acad Sci U S A ; 120(14): e2216231120, 2023 04 04.
Article En | MEDLINE | ID: mdl-36976764

Histamine is a conserved neuromodulator in mammalian brains and critically involved in many physiological functions. Understanding the precise structure of the histaminergic network is the cornerstone in elucidating its function. Herein, using histidine decarboxylase (HDC)-CreERT2 mice and genetic labeling strategies, we reconstructed a whole-brain three dimensional (3D) structure of histaminergic neurons and their outputs at 0.32 × 0.32 × 2 µm3 pixel resolution with a cutting-edge fluorescence microoptical sectioning tomography system. We quantified the fluorescence density of all brain areas and found that histaminergic fiber density varied significantly among brain regions. The density of histaminergic fiber was positively correlated with the amount of histamine release induced by optogenetic stimulation or physiological aversive stimulation. Lastly, we reconstructed a fine morphological structure of 60 histaminergic neurons via sparse labeling and uncovered the largely heterogeneous projection pattern of individual histaminergic neurons. Collectively, this study reveals an unprecedented whole-brain quantitative analysis of histaminergic projections at the mesoscopic level, providing a foundation for future functional histaminergic study.


Brain , Histamine , Mice , Animals , Brain/metabolism , Neurons/metabolism , Brain Mapping , Histidine Decarboxylase/genetics , Histidine Decarboxylase/metabolism , Mammals/metabolism
14.
Neurochem Int ; 165: 105520, 2023 05.
Article En | MEDLINE | ID: mdl-36933866

Effective therapeutic treatments for ischemic stroke are limited. Previous studies suggest selective activation of mitophagy alleviates cerebral ischemic injury while excessive autophagy is detrimental. However, few compounds are available to selectively activate mitophagy without affecting autophagy flux. Here, we found that acute administration of Umbelliferone (UMB) upon reperfusion exerted neuroprotective effects against ischemic injury in mice subjected to transient middle cerebral artery occlusion (tMCAO) and suppressed oxygen-glucose deprivation reperfusion (OGD-R)-induced apoptosis in SH-SY5Y cells. Interestingly, UMB promoted the translocation of mitophagy adaptor SQSTM1 to mitochondria and further reduced the mitochondrial content as well as the expression of SQSTM1 in SHSY5Y cells after OGD-R. Importantly, both the mitochondrial loss and reduction of SQSTM1 expression after UMB incubation can be reversed by autophagy inhibitor chloroquine and wortmannin, proving the mitophagy activation by UMB. Nevertheless, UMB failed to further affect neither LC3 lipidation nor the number of autophagosomes after cerebral ischemia in vivo and in vitro. Furthermore, UMB facilitated OGD-R-induced mitophagy in a Parkin-dependent manner. Inhibition of autophagy/mitophagy either pharmaceutically or genetically abolished the neuroprotective effects of UMB. Taken all, these results suggest that UMB protects against cerebral ischemic injury, both in vivo and in vitro, via promoting mitophagy without increasing the autophagic flux. UMB might serve as a potential leading compound for selectively activating mitophagy and the treatment of ischemic stroke.


Brain Ischemia , Ischemic Stroke , Neuroblastoma , Neuroprotective Agents , Reperfusion Injury , Mice , Humans , Animals , Neuroprotective Agents/therapeutic use , Sequestosome-1 Protein , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Neuroblastoma/metabolism , Autophagy/physiology , Mitochondria/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/prevention & control , Brain Ischemia/metabolism , Oxygen/metabolism , Umbelliferones/metabolism , Umbelliferones/pharmacology , Umbelliferones/therapeutic use , Ischemic Stroke/metabolism
15.
Nat Commun ; 13(1): 7136, 2022 11 21.
Article En | MEDLINE | ID: mdl-36414629

Epileptic seizures are widely regarded to occur as a result of the excitation-inhibition imbalance from a neuro-centric view. Although astrocyte-neuron interactions are increasingly recognized in seizure, elementary questions about the causal role of astrocytes in seizure remain unanswered. Here we show that optogenetic activation of channelrhodopsin-2-expressing astrocytes effectively attenuates neocortical seizures in rodent models. This anti-seizure effect is independent from classical calcium signaling, and instead related to astrocytic Na+-K+-ATPase-mediated buffering K+, which activity-dependently inhibits firing in highly active pyramidal neurons during seizure. Compared with inhibition of pyramidal neurons, astrocyte stimulation exhibits anti-seizure effects with several advantages, including a wider therapeutic window, large-space efficacy, and minimal side effects. Finally, optogenetic-driven astrocytic Na+-K+-ATPase shows promising therapeutic effects in a chronic focal cortical dysplasia epilepsy model. Together, we uncover a promising anti-seizure strategy with optogenetic control of astrocytic Na+-K+-ATPase activity, providing alternative ideas and a potential target for the treatment of intractable epilepsy.


Astrocytes , Neocortex , Animals , Adenosine Triphosphatases , Rodentia , Ions
16.
Curr Neuropharmacol ; 2022 Nov 17.
Article En | MEDLINE | ID: mdl-36424776

Feeding is an intrinsic and important behavior regulated by complex molecular, cellular and circuit-level mechanisms, one of which is the brain histaminergic network. In the past decades, many studies have provided a foundation of knowledge about the relationship between feeding and histamine receptors, which are deemed to have therapeutic potential but are not successful in treating feeding- related diseases. Indeed, the histaminergic circuits underlying feeding are poorly understood and characterized. This review describes current knowledge of histamine in feeding at the receptor level. Further, we provide insight into putative histamine- involved feeding circuits based on the classic feeding circuits. Understanding the histaminergic network in a circuit-specific way may be therapeutically relevant for increasing the drug specificity and precise treatment in feeding-related diseases.

17.
Research (Wash D C) ; 2022: 9802382, 2022.
Article En | MEDLINE | ID: mdl-36061821

Predatory hunting is an innate appetite-driven and evolutionarily conserved behavior essential for animal survival, integrating sequential behaviors including searching, pursuit, attack, retrieval, and ultimately consumption. Nevertheless, neural circuits underlying hunting behavior with different features remain largely unexplored. Here, we deciphered a novel function of lateral hypothalamus (LH) calcium/calmodulin-dependent protein kinase II α (CaMKIIα +) neurons in hunting behavior and uncovered upstream/downstream circuit basis. LH CaMKIIα + neurons bidirectionally modulate novelty-seeking behavior, predatory attack, and eating in hunting behavior. LH CaMKIIα + neurons integrate hunting-related novelty-seeking information from the medial preoptic area (MPOA) and project to the ventral periaqueductal gray (vPAG) to promote predatory eating. Our results demonstrate that LH CaMKIIα + neurons are the key hub that integrate MPOA-conveyed novelty-seeking signals and encode predatory eating in hunting behavior, which enriched the neuronal substrate of hunting behavior.

18.
Neurochem Res ; 47(12): 3697-3708, 2022 Dec.
Article En | MEDLINE | ID: mdl-35960484

Astrocytes act as "housekeeping cells" for maintaining cerebral homeostasis and play an important role in many disorders. Recent studies further highlight the contribution of autophagy to astrocytic functions, including astrogenesis, the astrocytic removal of neurotoxins or stressors, and astrocytic polarization. More importantly, genetic and pharmacological approaches have provided evidence that outlines the contributions of astrocytic autophagy to several brain disorders, including neurodegeneration, cerebral ischemia, and depression. In this study, we summarize the emerging role of autophagy in regulating astrocytic functions and discuss the contributions of astrocytic autophagy to different CNS disorders.


Astrocytes , Brain Ischemia , Humans , Autophagy/physiology , Brain
19.
Curr Biol ; 32(9): 1937-1948.e5, 2022 05 09.
Article En | MEDLINE | ID: mdl-35338850

Novel targets for treating feeding-related diseases are of great importance, and histamine has long been considered an anorexigenic agent. However, understanding its functions in feeding in a circuit-specific way is still limited. Here, we report a medial septum (MS)-projecting histaminergic circuit mediating feeding behavior. This MS-projecting histaminergic circuit is functionally inhibited during food consumption, and bidirectionally modulates feeding behavior via downstream H2, but not H1, receptors on MS glutamatergic neurons. Further, we observed a pathological decrease of histamine 2 receptors (H2Rs) expression in MS glutamatergic neurons in diet-induced obesity (DIO) mice. Genetically, down-regulation of H2Rs expression in MS glutamatergic neurons accelerates body-weight gain. Importantly, chronic activation of H2Rs in MS glutamatergic neurons (with its clinical agonist amthamine) significantly slowed down the body-weight gain in DIO mice, providing a possible clinical utility to treat obesity. Together, our results demonstrate that this MS-projecting histaminergic circuit is critically involved in feeding, and H2Rs in MS glutamatergic neurons is a promising target for treating body-weight problems.


Feeding Behavior , Histamine , Animals , Feeding Behavior/physiology , Histamine/metabolism , Histamine/pharmacology , Mice , Neurons/physiology , Obesity/metabolism , Weight Gain
20.
Curr Top Behav Neurosci ; 59: 355-387, 2022.
Article En | MEDLINE | ID: mdl-34622397

Histamine has long been accepted as an anorexigenic agent. However, lines of evidence have suggested that the roles of histamine in feeding behaviors are much more complex than previously thought, being involved in satiety, satiation, feeding motivation, feeding circadian rhythm, and taste perception and memory. The functional diversity of histamine makes it a viable target for clinical management of obesity and other feeding-related disorders. Here, we update the current knowledge about the functions of histamine in feeding and summarize the underlying molecular and neural circuit mechanisms. Finally, we review the main clinical studies about the impacts of histamine-related compounds on weight control and discuss insights into future research on the roles of histamine in feeding. Despite the recent progress in histamine research, the histaminergic feeding circuits are poorly understood, and it is also worth verifying the functions of histamine receptors in a more spatiotemporally specific manner.


Brain , Histamine , Brain/physiology , Circadian Rhythm/physiology , Feeding Behavior/physiology , Histamine/physiology , Receptors, Histamine/metabolism
...