Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Pain ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953581

RESUMEN

BACKGROUND: Visceral hypersensitivity is considered the core pathophysiological mechanism that causes abdominal pain in patients with irritable bowel syndrome (IBS). Fungal dysbiosis has been proved to contribute to visceral hypersensitivity in IBS patients. However, the underlying mechanisms for Dectin-1, a major fungal recognition receptor, in visceral hypersensitivity are poorly understood. This study aimed to explore the role of Dectin-1 in visceral hypersensitivity and elucidate the impact of Dectin-1 activity on the function of transient receptor potential vanilloid type 1 (TRPV1). METHODS: Visceral hypersensitivity model was established by the intracolonic administration of 0.1 mL TNBS (130 µg/mL in 30% ethanol) in the male mice. Fluconazole and nystatin were used as fungicides. Laminarin, a Dectin-1 antagonist and gene knockout (Clec7a-/-) mice were used to interrupt the function of Dectin-1. Colorectal distension-electromyogram recording was performed to assess visceral sensitivity. Immunostaining experiment was performed to determine the localization of Dectin-1 in dorsal root ganglion (DRG) neurons. Calcium imaging study was performed to assay TRPV1-mediated calcium influx in acutely dissociated DRG neurons. RESULTS: Pretreatment with fungicides, administration of laminarin or genetic deletion of Clec7a alleviated TNBS-induced visceral hypersensitivity in male mice. The expression of Dectin-1 was upregulated in the DRG and colon of TNBS-treated mice. Colocalization of Dectin-1 and TRPV1 was observed in DRG neurons. Importantly, pretreatment with curdlan, a Dectin-1 agonist, increased TRPV1-mediated calcium influx. CONCLUSIONS: Dectin-1 contributes to visceral hypersensitivity in IBS or in inflammatory bowel disease in remission and activation of Dectin-1 induces TRPV1 sensitization. SIGNIFICANCE STATEMENT: This work provides direct evidence for the functional regulation of TRPV1 channel by Dectin-1 activity, proposing a new mechanism underlying TRPV1 sensitization. Control of intestinal fungi might be beneficial for the treatment of refractory abdominal pain in patients with IBS or IBD in remission.

2.
Front Cell Neurosci ; 16: 875726, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35465611

RESUMEN

Somatostatin-positive (SOM+) neurons have been proposed as one of the key populations of excitatory interneurons in the spinal dorsal horn involved in mechanical pain. However, the molecular mechanism for their role in pain modulation remains unknown. Here, we showed that the T-type calcium channel Cav3.2 was highly expressed in spinal SOM+ interneurons. Colocalization of Cacna1h (which codes for Cav3.2) and SOM tdTomato was observed in the in situ hybridization studies. Fluorescence-activated cell sorting of SOM tdTomato cells in spinal dorsal horn also proved a high expression of Cacna1h in SOM+ neurons. Behaviorally, virus-mediated knockdown of Cacna1h in spinal SOM+ neurons reduced the sensitivity to light touch and responsiveness to noxious mechanical stimuli in naïve mice. Furthermore, knockdown of Cacna1h in spinal SOM+ neurons attenuated thermal hyperalgesia and dynamic allodynia in the complete Freund's adjuvant-induced inflammatory pain model, and reduced both dynamic and static allodynia in a neuropathic pain model of spared nerve injury. Mechanistically, a decrease in the percentage of neurons with Aß-eEPSCs and Aß-eAPs in superficial dorsal horn was observed after Cacna1h knockdown in spinal SOM+ neurons. Altogether, our results proved a crucial role of Cav3.2 in spinal SOM+ neurons in mechanosensation under basal conditions and in mechanical allodynia under pathological pain conditions. This work reveals a molecular basis for SOM+ neurons in transmitting mechanical pain and shows a functional role of Cav3.2 in tactile and pain processing at the level of spinal cord in addition to its well-established peripheral role.

3.
Front Mol Neurosci ; 12: 5, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30740043

RESUMEN

The Ca2+-binding protein Kv channel interacting protein 3 (KChIP3) or downstream regulatory element antagonist modulator (DREAM), a member of the neuronal calcium sensor (NCS) family, shows remarkable multifunctional properties. It acts as a transcriptional repressor in the nucleus and a modulator of ion channels or receptors, such as Kv4, NMDA receptors and TRPV1 channels on the cytomembrane. Previous studies of Kcnip3 -/- mice have indicated that KChIP3 facilitates pain hypersensitivity by repressing Pdyn expression in the spinal cord. Conversely, studies from transgenic daDREAM (dominant active DREAM) mice indicated that KChIP3 contributes to analgesia by repressing Bdnf expression and attenuating the development of central sensitization. To further determine the role of KChIP3 in pain transmission and its possible involvement in emotional processing, we assessed the pain sensitivity and negative emotional behaviors of Kcnip3 -/- rats. The knockout rats showed higher pain sensitivity compared to the wild-type rats both in the acute nociceptive pain model and in the late phase (i.e., 2, 4 and 6 days post complete Freund's adjuvant injection) of the chronic inflammatory pain model. Importantly, Kcnip3 -/- rats displayed stronger aversion to the pain-associated compartment, higher anxiety level and aggravated depression-like behavior. Furthermore, RNA-Seq transcriptional profiling of the forebrain cortex were compared between wild-type and Kcnip3 -/- rats. Among the 68 upregulated genes, 19 genes (including Nr4a2, Ret, Cplx3, Rgs9, and Itgad) are associated with neural development or synaptic transmission, particularly dopamine neurotransmission. Among the 79 downregulated genes, 16 genes (including Col3a1, Itm2a, Pcdhb3, Pcdhb22, Pcdhb20, Ddc, and Sncaip) are associated with neural development or dopaminergic transmission. Transcriptional upregulation of Nr4a2, Ret, Cplx3 and Rgs9, and downregulation of Col3a1, Itm2a, Pcdhb3 and Ddc, were validated by qPCR analysis. In summary, our studies showed that Kcnip3 -/- rats displayed higher pain sensitivity and stronger negative emotions, suggesting an involvement of KChIP3 in negative emotions and possible role in central nociceptive processing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA