Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
iScience ; 26(7): 107077, 2023 Jul 21.
Article En | MEDLINE | ID: mdl-37485374

The polycrystalline SrFe12O19 samples deeply substituted up to at.67% by Al3+, Ga3+, In3+, Co3+, and Cr3+ cations with a high configurational mixing entropy were prepared by solid-phase synthesis. Phase purity and unit cell parameters were obtained from XRD and analyzed versus the average ionic radius of the iron sublattice. The crystallite size varied around ∼4.5 µm. A comprehensive study of the magnetization was realized in various fields and temperatures. The saturation magnetization was calculated using the Law of Approach to Saturation. The accompanying magnetic parameters were determined. The magnetic crystallographic anisotropy coefficient and the anisotropy field were calculated. All investigated magnetization curves turned out to be nonmonotonic. The magnetic ordering and freezing temperatures were extracted from the ZFC and FC curves. The average size of magnetic clusters varied around ∼350 nm. The high values of the configurational mixing entropy and the phenomenon of magnetic dilution were taken into account.

2.
Nanomaterials (Basel) ; 12(8)2022 Apr 11.
Article En | MEDLINE | ID: mdl-35458015

Multisubstituted barium ferrites with a magnetoplumbite structure were obtained by the method of solid-phase reactions with ferritization and pre-firing. Three-charged, mainly diamagnetic cations Al3+, Cr3+, Ga3+, and In3+ were chosen as substituents for the Fe3+ iron cations, the proportion of which in solid solutions did not exceed 50%. The values of the configurational mixing entropy were calculated for all the compositions. A slight deviation of the chemical composition of the obtained solid solutions from the nominal value was established by the energy-dispersive X-ray spectroscopy method. The phase purity and values of the unit cell parameters were refined from X-ray scattering data using full-profile analysis in the Rietveld method. A non-monotonic behavior of the unit cell parameters as a function of the B-sub-lattice average ionic radius of the magnetoplumbite structure was found. A minimum unit cell volume of ~667.15 Å3 was found for the composition BaFe6.11Al1.56Cr2.17Ga2.16O19 with a B-sub-lattice average ionic radius of ~7.449 Å. The average crystallite size varied within 5.5-6.5 µm. The temperature and field dependencies of the magnetization have been measured. The values of the saturation magnetization, residual magnetization, hysteresis loop squareness, and coercivity at 50 K and 300 K were extracted from the experimental data. Using the Law of Approach to Saturation, the magnetic crystallographic anisotropy coefficient and anisotropy field were calculated. Multisubstitution leads to a significant decrease in such magnetic parameters as the magnetic ordering temperature and spontaneous magnetization at both temperatures. The maximum magnetic ordering temperature of ~297.7 K was found for the composition BaFe5.84Ga6.19O19 with a B-sub-lattice average ionic radius of ~7.586 Å in a field of 500 Oe. A maximum saturation magnetization of ~24.7 emu/g was found for the composition BaFe5.84Ga6.19O19 with a B-sub-lattice average ionic radius of ~7.586 Å at 50 K. A maximum hysteresis loop squareness of ~0.72 was found for the composition BaFe6.11Al1.56Cr2.17Ga2.16O19 with an average ionic radius of ~7.449 Å at 50 K. A maximum magnetic crystallographic anisotropy coefficient of ~2.09 × 105 Erg/g was found for the composition BaFe6.19Al1.25Cr1.57Ga1.74In1.26O19 with a B-sub-lattice average ionic radius of ~7.706 Å at 50 K. The frustrated magnetic state including the nano-sized clusters with an average diameter in the range of 50-200 nm was established from the results of measuring the ZFC and FC temperature magnetizations. The interpretation of the obtained experimental data is carried out taking into account the increased stability of high-entropy phases and regular changes in the intensity of the Fe3+(Al3+, Cr3+, Ga3+, In3+)-O2--Fe3+(Al3+, Cr3+, Ga3+, In3+) indirect superexchange interactions as a result of magnetic dilution of the iron sub-lattice in the magnetoplumbite structure.

3.
Nanomaterials (Basel) ; 11(4)2021 Apr 15.
Article En | MEDLINE | ID: mdl-33921115

La-, Nd- and La/Nd-based polysubstituted high-entropy oxides (HEOs) were produced by solid-state reactions. Composition of the B-site was fixed for all samples (Cr0.2Mn0.2Fe0.2Co0.2Ni0.2) with varying of A-site cation (La, Nd and La0.5Nd0.5). Nominal chemical composition of the HEOs correlates well with initial calculated stoichiometry. All produced samples are single phase with perovskite-like structure. Average particle size is critically dependent on chemical composition. Minimal average particle size (~400 nm) was observed for the La-based sample and maximal average particle size (5.8 µm) was observed for the Nd-based sample. The values of the configurational entropy of mixing for each sample were calculated. Electrical properties were investigated in the wide range of temperatures (150-450 K) and frequencies (10-1-107 Hz). Results are discussed in terms of the variable range hopping and the small polaron hopping mechanisms. Magnetic properties were analyzed from the temperature and field dependences of the specific magnetization. The frustrated state of the spin subsystem was observed, and it can be a result of the increasing entropy state. From the Zero-Field-Cooling and Field-Cooling regimes (ZFC-FC) curves, we determine the average and Smax maximum size of a ferromagnetic nanocluster in a paramagnetic matrix. The average size of a ferromagnetic cluster is ~100 nm (La-CMFCNO) and ~60 nm (LN-CMFCNO). The Smax maximum size is ~210 nm (La-CMFCNO) and ~205 nm (LN-CMFCNO). For Nd-CMFCNO, spin glass state (ferromagnetic cluster lower than 30 nm) was observed due to f-d exchange at low temperatures.

4.
Nanomaterials (Basel) ; 12(1)2021 Dec 23.
Article En | MEDLINE | ID: mdl-35009987

Three high-entropy Sm(Eu,Gd)Cr0.2Mn0.2Fe0.2Co0.2Ni0.2O3 perovskite solid solutions were synthesized using the usual ceramic technology. The XRD investigation at room temperature established a single-phase perovskite product. The Rietveld refinement with the FullProf computer program in the frame of the orthorhombic Pnma (No 62) space group was realized. Along with a decrease in the V unit cell volume from ~224.33 Å3 for the Sm-based sample down to ~221.52 Å3 for the Gd-based sample, an opposite tendency was observed for the unit cell parameters as the ordinal number of the rare-earth cation increased. The average grain size was in the range of 5-8 µm. Field magnetization was measured up to 30 kOe at 50 K and 300 K. The law of approach to saturation was used to determine the Ms spontaneous magnetization that nonlinearly increased from ~1.89 emu/g (Sm) up to ~17.49 emu/g (Gd) and from ~0.59 emu/g (Sm) up to ~3.16 emu/g (Gd) at 50 K and 300 K, respectively. The Mr residual magnetization and Hc coercive force were also determined, while the SQR loop squareness, k magnetic crystallographic anisotropy coefficient, and Ha anisotropy field were calculated. Temperature magnetization was measured in a field of 30 kOe. ZFC and FC magnetization curves were fixed in a field of 100 Oe. It was discovered that the Tmo magnetic ordering temperature downward-curve decreased from ~137.98 K (Sm) down to ~133.99 K (Gd). The spin glass state with ferromagnetic nanoinclusions for all the samples was observed. The average and Dmax maximum diameter of ferromagnetic nanoinclusions were calculated and they were in the range of 40-50 nm and 160-180 nm, respectively. The mechanism of magnetic state formation is discussed in terms of the effects of the A-site cation size and B-site poly-substitution on the indirect superexchange interactions.

5.
Nanomaterials (Basel) ; 10(2)2020 Feb 05.
Article En | MEDLINE | ID: mdl-32033483

The possibility of the formation of high entropy single-phase perovskites using solid-state sintering was investigated. The BaO-SrO-CaO-MgO-PbO-TiO2, BaO-SrO-CaO-MgO-PbO-Fe2O3 and Na2O-K2O-CaO-La2O3-Ce2O3-TiO2 oxide systems were investigated. The optimal synthesis temperature is found between 1150 and 1400 °C, at which the microcrystalline single phase with perovskite structure was produced. The morphology, chemical composition, crystal parameters and dielectric properties were studied and compared with that of pure BaTiO3. According to the EDX data, the single-phase product has a formula of Na0.30K0.07Ca0.24La0.18Ce0.21TiO3 and a cubic structure.

6.
Nanomaterials (Basel) ; 9(4)2019 Apr 06.
Article En | MEDLINE | ID: mdl-30959914

Crystalline high-entropy single-phase products with a magnetoplumbite structure with grains in the µm range were obtained using solid-state sintering. The synthesis temperature was up to 1400 °C. The morphology, chemical composition, crystal structure, magnetic, and electrodynamic properties were studied and compared with pure barium hexaferrite BaFe12O19 matrix. The polysubstituted high-entropy single-phase product contains five doping elements at a high concentration level. According to the EDX data, the new compound has a formula of Ba(Fe6Ga1.25In1.17Ti1.21Cr1.22Co1.15)O19. The calculated cell parameter values were a = 5.9253(5) Å, c = 23.5257(22) Å, and V = 715.32(9) ų. The increase in the unit cell for the substituted sample was expected due to the different ionic radius of Ti/In/Ga/Cr/Co compared with Fe3+. The electrodynamic measurements were performed. The dielectric and magnetic permeabilities were stable in the frequency range from 2 to 12 GHz. In this frequency range, the dielectric and magnetic losses were -0.2/0.2. Due to these electrodynamic parameters, this material can be used in the design of microwave strip devices.

7.
Materials (Basel) ; 10(6)2017 May 25.
Article En | MEDLINE | ID: mdl-28772940

Barium hexaferrite powder samples with grains in the µm-range were obtained from solid-state sintering, and crystals with sizes up to 5 mm grown from PbO, Na2CO3, and BaB2O4 fluxes, respectively. Carbonate and borate fluxes provide the largest and structurally best crystals at significantly lower growth temperatures of 1533 K compared to flux-free synthesis (1623 K). The maximum synthesis temperature can be further reduced by the application of PbO-containing fluxes (down to 1223 K upon use of 80 at % PbO), however, Pb-substituted crystals Ba1-xPbxFe12O19 with Pb contents in the range of 0.23(2) ≤ x ≤ 0.80(2) form, depending on growth temperature and flux PbO content. The degree of Pb-substitution has only a minor influence on unit cell and magnetic parameters, although the values for Curie temperature, saturation magnetization, as well as the coercivity of these samples are significantly reduced in comparison with those from samples obtained from the other fluxes. Due to the lowest level of impurities, the samples from carbonate flux show superior quality compared to materials obtained using other methods.



Powered by iAHx -
|
...